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Abstract 

Background This study systematically compares the impact of innovative deep learning image reconstruction 
(DLIR, TrueFidelity) to conventionally used iterative reconstruction (IR) on nodule volumetry and subjective image 
quality (IQ) at highly reduced radiation doses. This is essential in the context of low‑dose CT lung cancer screening 
where accurate volumetry and characterization of pulmonary nodules in repeated CT scanning are indispensable.

Materials and methods A standardized CT dataset was established using an anthropomorphic chest phantom 
(Lungman, Kyoto Kaguku Inc., Kyoto, Japan) containing a set of 3D‑printed lung nodules including six diameters 
(4 to 9 mm) and three morphology classes (lobular, spiculated, smooth), with an established ground truth. Images 
were acquired at varying radiation doses (6.04, 3.03, 1.54, 0.77, 0.41 and 0.20 mGy) and reconstructed with combina‑
tions of reconstruction kernels (soft and hard kernel) and reconstruction algorithms (ASIR‑V and DLIR at low, medium 
and high strength). Semi‑automatic volumetry measurements and subjective image quality scores recorded by five 
radiologists were analyzed with multiple linear regression and mixed‑effect ordinal logistic regression models.

Results Volumetric errors of nodules imaged with DLIR are up to 50% lower compared to ASIR‑V, especially at radia‑
tion doses below 1 mGy and when reconstructed with a hard kernel. Also, across all nodule diameters and morpholo‑
gies, volumetric errors are commonly lower with DLIR. Furthermore, DLIR renders higher subjective IQ, especially 
at the sub‑mGy doses. Radiologists were up to nine times more likely to score the highest IQ‑score to these images 
compared to those reconstructed with ASIR‑V. Lung nodules with irregular margins and small diameters also had 
an increased likelihood (up to five times more likely) to be ascribed the best IQ scores when reconstructed with DLIR.

Conclusion We observed that DLIR performs as good as or even outperforms conventionally used reconstruction 
algorithms in terms of volumetric accuracy and subjective IQ of nodules in an anthropomorphic chest phantom. As 
such, DLIR potentially allows to lower the radiation dose to participants of lung cancer screening without compromis‑
ing accurate measurement and characterization of lung nodules.
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Introduction
According to the 2020 Global Cancer Statistics, lung 
cancer remains the second most commonly diagnosed 
cancer and the leading cause of cancer-related death [1]. 
Mortality rates are high, as lung cancer is often diagnosed 
at an advanced stage when cure is no longer possible. 
Over the last decade, two large randomized controlled 
trials have demonstrated that lung cancer specific mor-
tality is significantly lower among high risk participants 
who underwent screening with low-dose Computed 
Tomography (CT) compared to screening with chest 
radiography or no screening at all [2–4]. Consequently, 
thorough research on all aspects of lung cancer screening 
(LCS) has gained momentum in many European coun-
tries to prepare and support implementation of LCS on a 
national level [5–9].

Despite the benefits of LCS, it is of utmost importance 
that radiation risks of screening, like radiation-induced 
secondary cancers, are considered and that radiation 
doses are as low as reasonably achievable (ALARA prin-
ciple) [10, 11]. Historically, many advancements have 
been made in CT technology driven by efforts to mini-
mize the radiation dose. Image reconstruction techniques 
have been one of the main areas of development over the 
last decades to implement proper treatment of image 
noise in dose reduction techniques [12–15]. Compared to 
filter back projection (FBP), iterative reconstruction (IR) 
methods generally provide fewer artifacts and relatively 
higher signal-to-noise ratios for a given dose level [10, 
15–19]. The hybrid IR methods, like ASIR-V (GE Health-
care), iteratively filter raw imaging data in combination 
with a backward projection, resulting in high reduction 
of artifacts and image noise [14]. Downside of these algo-
rithms is that reconstruction times are long and that it 
produces images that appear blotchy, waxy- or plastic-
looking which compromises detection of small lesions 
and nodules [12, 13]. This alteration in image texture, to 
which radiologists are generally less inclined, is caused by 
a shift in the noise power spectrum [13, 16]. Especially 
when reducing the radiation dose to the level of a chest 
radiography, this will affect the visibility of subtle image 
features and reduce object detectability [15, 20]. Nowa-
days with advancements in artificial intelligence (AI) and 
more readily available computing power, deep learning 
image reconstruction (DLIR) has gained more and more 
attention in the field of CT as it is able to generate high-
quality images from low-dose sinogram input. DLIR is 

proposed as the solution in providing better image qual-
ity with desirable noise properties of FBP at acquisition 
doses and reconstruction times that outperform IR [11, 
15, 17, 19, 21, 22]. Although the underlying working 
mechanism of these DLIR techniques is not fully know, 
these resulting denoising features appear to be particu-
larly interesting in the context of low-dose CT screening.

LCS requires an adequate level of image quality as 
radiologists want to detect lung nodules when still small 
and characterize them as accurate as possible to provide 
appropriate work-up and/or follow-up management [3, 
4]. This way, participants with an early diagnosed lung 
cancer have a better prognosis with improved five-year 
survival rates and expanded eligibility for curative surgi-
cal treatment [3, 23, 24]. Per definition, pulmonary nod-
ules are round opacities in the lung that are well or poorly 
defined and measure up to 3 cm in diameter [25]. Even 
though there is a positive correlation between nodule size 
and malignancy, small nodules also have a likelihood of 
being malignant [23]. Nowadays, nodule management is 
primarily driven by nodule size, preferably determined 
by volumetry but diameter measurements are also pos-
sible [24, 26–28]. Therefore, accurate measurements of 
the size are essential. However, evaluation of benignity 
or malignity of nodules should not be based solely on 
size estimates. The LCS trials reported that up to half of 
detected lung cancers were adenocarcinomas, emphasiz-
ing the importance of investigating those morphologies 
resembling invasive, irregular forms of lung nodules [3, 4, 
26]. Indeed, lobulated shapes and spiculated margins are 
features that are reported to be highly associated with a 
malignant nature [3, 23]. Lobulation arises when different 
parts within the nodule have uneven growth rates [23]. 
Spiculation is the radial and unbranched extension from 
the boundary of the nodule into the lung parenchyma 
[23]. Nodule management guidelines by the American 
College of Radiology (Lung-RADS 2022) or the British 
thoracic society (BTS guidelines) increasingly acknowl-
edge the importance of morphology. The shapes and 
margins of pulmonary nodules should no longer be over-
looked and should also be considered in synergy with 
size considerations in research [23, 26]. In the context of 
LCS, where a low radiation dose is a prerequisite, accu-
rate characterization of all nodule characteristics must be 
preserved. However, CT image acquisitions with extreme 
dose reduction may impair the accuracy of volumet-
ric assessment and the characterization of morphology 
because of increased noise levels [26].
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As such, recent studies have investigated the role of 
DLIR in low-dose CT imaging by analyzing the objective 
and subjective image quality (IQ). Most of these stud-
ies on the one hand used physical evaluation phantoms 
to perform a technical assessment of IQ based on noise, 
noise power spectrum, task-based transfer functions, 
modulation transfer functions, detectability index, spa-
tial resolution etc. [15, 17, 22, 29]. Those conventional 
quantitative metrics indicate that DLIR has the poten-
tial to generate images with objectively less noise. It is 
however important to keep in mind that those phantoms 
are far removed from real-life situations. As such, the 
improvements in objective IQ parameters from DLIR are 
not necessarily directly correlated with improvements 
in diagnostic accuracy [30]. On the other hand, another 
group of studies has used patient images to additionally 
investigate subjective scoring of IQ [30, 31]. The reported 
improved IQ of DLIR must however be put in perspec-
tive to the uncertainties related to the real-life patient 
set-up and their variabilities. For example, in most cases 
these patients were only scanned at one radiation dose, 
making it impossible to compare the same patient/ set-
up at multiple dose levels [26, 30]. Besides, images could 
have been taken with or without contrast enhancement, 
where the intensity of the contrast agent in function of 
time could complicate direct pairwise comparison of 
contrast-to-noise ratios across different scans and recon-
structions [32]. Between scans of different patients, vari-
ations in slice thickness have potential influence on noise 
and spatial resolution outcomes. Also, when CT scanners 
and reconstruction algorithms of different manufacturers 
are used it impedes pairwise comparisons. Lastly, within 
the same patient differences in lung volume/fill affect vol-
umetry measurements.

Therefore, the purpose of this study was to investigate 
whether the nodule volumetric accuracy and subjective 
IQ perception of a new image reconstruction technique 
based on DL performs at least as good as the conven-
tionally used IR algorithm. To this end, we established 
an anthropomorphic chest phantom CT dataset, resem-
bling clinical daily practice. The exhaustive dataset allows 
to methodically investigate the impact of CT acquisition 
dose, reconstruction algorithm and reconstruction kernel 
on two metrics. These two metrics are semi-automatic 
volumetry measurements and subjective image quality, 
related to morphological nodule assessment.

Materials and methods
Anthropomorphic phantom
The multipurpose anthropomorphic chest phantom 
(Lungman phantom, Kyoto Kaguku Inc., Kyoto, Japan 
[33]) was used to acquire a standardized CT dataset. The 
phantom encloses an internal removable polyurethane 

structure, mimicking the pulmonary vessels and bronchi 
(up to the first bifurcation) connected to the mediasti-
num. These structures are three dimensionally dispersed 
in the phantom lung field that is naturally filled with air. 
Furthermore, synthetic bones of the chest made from 
epoxy resins are embedded in the phantom. To accom-
modate to a hypothetical screening situation of a Euro-
pean participant, the accompanying chest plates/ fat slabs 
(30 mm) were utilized during image acquisition (male, 
82 kg, 168 cm, Body mass index of 29). The arms of the 
phantom are in abducted position, which further aligns 
with conventional positioning of patients and partici-
pants during chest CT-examinations.

3D‑printed lung nodules
A set of 18 isolated nodule structures were 3D-printed 
in a material with a density of 1.17 g/cm3 (Resin Clear 
V4; Formlabs, Somerville, MA, USA) which appears 
radiodense in lung window and simulates solid lung 
nodules. The nodules can be subdivided in three mor-
phology classes being lobular, spiculated and smooth. Per 
morphology class, nodules were printed with different 
diameters, starting from 4 to 9 mm with an increment of 
1 mm. The nodules were randomly affixed between the 
pulmonary vessels of the Lungman phantom. For the 
determination of the clinically relevant reference volume 
of each of the 18 nodules, we calculated the average vol-
ume across the five radiologists measured on high dose 
CT scans  (CTDIvol 11 mGy) reconstructed with ASIR-V 
60%. Table 1 summarizes the information of the pulmo-
nary nodule set.

Image acquisition and reconstruction
CT images of the Lungman phantom were acquired using 
the 256-slice GE Revolution CT scanner. Midline of the 
phantom was positioned in the isocenter. The CT scan-
ner was operated at a tube voltage of 100 kVp, 40 mm 
collimation, pitch 0.98 and a gantry rotation time of 0.35 
seconds. A total of six helical scan series were taken at 
different dose levels. The applied volumetric CT dose 
index  (CTDIvol) values were 6.04 mGy (routine clinical 
chest protocol University Hospital Antwerp), 3.03, 1.54, 
0.77, 0.41 and 0.20 mGy. In all cases tube current mod-
ulation (TCM) was used. The phantom, containing the 
18 printed lung cancer nodules, remained at the same 
position to ensure that nodules are in the same place for 
each acquisition. Each of these six CT scans was recon-
structed with a slice thickness of 1.25 mm and either a 
standard/soft tissue kernel or a hard/lung reconstruction 
kernel. The applied reconstruction algorithms included 
the routinely used volume adaptive statistical iterative 
reconstruction at 60% blending (ASIR-V 60%) and the 
TrueFidelity (GE Healthcare) DLIR at a low, medium and 
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high level strength [34]. Schematic summary of the image 
acquisition of the anthropomorphic phantom together 
with the set of 18 nodules is depicted in Fig. 1.

Nodule measurement and scoring
Five independent radiologists (experience ranging from 2 
to 14 years) were asked to measure the volume and score 
the IQ of the 18 lung nodules on each of the 48 CT series. 
All image series were presented in a random order and 
blinded for dose and reconstruction parameters. Images 
were presented on a clinical PACS environment using 
a high-contrast color monitor (Barco MDCC-4430) at 
optimal lighting conditions.

Nodule volumetry
All nodule volumes were determined using Lung VCAR 
semi-automated volumetry software (GE Healthcare) 
which is available in the PACS environment [35]. With 

this tool, radiologists manually initiate volumetry by pro-
viding a seed point to the software. The software then 
performs an automatic segmentation of the nodule and 
determines its volume in  mm3. If the software tool was 
unable to give semi-automatic segmentation and volume 
determination, the radiologists were instructed to leave 
the form entry blank. Furthermore, they did not have to 
segment and correct segmentations and volumetry meas-
urements manually. The individual volumetric measure-
ments are then compared to the ground truth reference 
volumes depicted previously in Table 1. For this we used 
the clinically relevant reference volumes determined on 
the high dose  (CTDIvol 11 mGy) images. The absolute 
percentage volumetric error  (APEvolume) between individ-
ual measurements and ground truth values is then calcu-
lated with the formula depicted below.

Image quality score
Subjective IQ was interpreted for each of the 18 nodules 
on each of the 48 image acquisitions in a side-by-side 
comparison with the same high dose reference images 
as mentioned before  (CTDIvol 11 mGy). Radiologists 
recorded the perceived IQ as a score from 1 to 5 on an 
adapted five-point Likert scale, where nodules were per-
ceived with a quality as good as on the high dose refer-
ence images (IQ score 5), minor reduction in quality 
compared to the high dose images (IQ score 4), moder-
ate image quality (IQ score 3), very bad image quality (IQ 
score 2) or almost not visible in comparison to the high 
dose images (IQ score 1).

Statistical analysis
Statistical analysis was performed in RStudio [36, 37] 
with the statistical software package MASS [38]. Graphs 
were generated with GraphPad Prism version 8.0.2 [39].

APEvolume(%) =
Measured volume mm3

− Ground truth volume mm3

Ground truth volume mm3
x100

Table 1 Characteristics of the set of 18 3D‑printed pulmonary 
nodules

The 3D-printed nodules were affixed in the anthropomorphic chest phantom. 
All nodules have the same density (1.17 g/cm3). The column  volumeHigh dose 

CT presents the ground truth reference volumes of the nodules determined as 
the average of five measurements on CT scans acquired at a  CTDIvol of 11 mGy, 
reconstructed with adaptive statistical iterative reconstruction at 60% blending 
(ASIR-V 60%). Standard deviations over the five measurements per nodule are 
presented in the last column

Nodule Diameter 
(mm)

Morphology type VolumeHigh dose CT 
(mm3)

Standard 
Deviation 
(mm3)

4 Lobulated 29.0 0

Spiculated 28.3 0.6

Smooth 34.0 0

5 Lobulated 57.8 0.5

Spiculated 51.5 1.0

Smooth 68.3 0.5

6 Lobulated 99.3 3.5

Spiculated 93.5 1.0

Smooth 117.8 0.5

7 Lobulated 156.5 1.0

Spiculated 144.5 3.0

Smooth 188.5 1.0

8 Lobulated 244 4.0

Spiculated 205.5 0.6

Smooth 282.5 3.8

9 Lobulated 339.3 1.5

Spiculated 300.8 0.5

Smooth 391.3 1.5

Fig. 1 Schematic representation of how a standardized CT dataset 
was established. Abbreviations: CTDIvol: Volumetric Computed 
Tomography Dose Index, ASIR‑V 60%: adaptive statistical iterative 
reconstruction at 60% blending, IR: image reconstruction
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Nodule volumetry
Via two multiple linear regression models, the influence 
of several predictor variables (radiation dose, reconstruc-
tion algorithm, reconstruction kernel, nodule morphol-
ogy and diameter) was estimated on the outcome variable 
(calculated  APEvolume). The categorical predictor variables 
were included as dummy coded binary variables. Further-
more, the regression models included two-way interaction 
terms between the predictor variables. Assumptions for 
multiple linear regression were checked and the  APEvolume 
data follows a log-normal distribution. Outlier identifica-
tion was performed with the ROUT method. Since nod-
ule volumetry was performed with the semi-automatic, 
observer-independent Lung VCAR tool without manual 
editing, we did not include random effects related to 
interreader variability. A first linear regression model was 
used to estimate volumetric errors of all nodules for the 
different doses, reconstruction algorithms and kernels. A 
second linear regression analysis was performed analo-
gously to examine whether  APEvolume varied when chang-
ing the predictor variables nodule diameter, morphology 
and reconstruction algorithm. To reduce multicollinear-
ity between predictor variables, the continuous predictor 
variable radiation dose was standardized by subtracting 
the mean of each dose value and dividing the difference by 
the standard deviation of dose values. Output coefficients 
of both multiple linear regression models gave a general 
estimate of the absolute error that would be scored for a 
specific nodule in a particular image acquisition. Based on 
F-statistics, we can determine which predictor variables 
or interaction terms significantly influence the outcome 
variable  APEvolume. P-values (two-sided) smaller than 0.05 
indicated a statistically significant impact.

Image quality score
The ordinal, categorical IQ score data was analyzed with 
a mixed-effect ordinal logistic regression model. The 
binary outcome of the logistic regression model allows 
estimation of the possibility for a radiologist to allocate 
a particular IQ score (1 to 5) to a nodule on a certain 
image acquisition. As subjective image quality assess-
ment intrinsically varies between different radiologists, 
the model was adapted to account for this via inclusion of 
random intercepts. Further, all main predictors as well as 
their interaction effects were included in the model, anal-
ogous to the volumetry analysis. From the output of the 
ordinal logistic regression we can calculate odds ratios 
that nodules with certain diameter and morphology are 
scored a particular IQ score. Based on likelihood ratio 
Chi square statistics, we determined which predictor 
variables or interactions terms have a significant effect on 
the perceived subjective IQ. P-values smaller than 0.05 
indicated a statistically significant impact.

Results
Volumetric accuracy for varying radiation doses
Table  2 summarizes the predictor variables included in 
the first multiple linear regression analysis, their two-way 
interaction terms and strength with which they have an 
influence on the estimates of the  APEvolume as determined 
by the F-statistics and p-values. It can be observed that all 
main predictor variables (dose, reconstruction algorithm 
and kernel) have a significant influence on volumetric 
accuracy. For the interaction effects, only the interaction 
between dose and reconstruction algorithm showed no 
significant effect. No variability was detected between 
different radiologists.

Graphical representation of the impact of the four dif-
ferent reconstruction algorithms at the six radiation 
doses (in mGy) on volumetric accuracy can be found in 
Fig. 2 for both the soft tissue as well as the lung kernel. 
On the left side of Fig. 2, estimates of  APEvolume derived 
by the linear regression model are shown. For the soft 
tissue reconstruction kernel there is an overall reduc-
tion in  APEvolume for increasing radiation doses. With 
the lung kernel,  APEvolume values remain mainly constant 
for the six different doses. When comparing the effect of 
reconstruction algorithms for each of the individual dose 
levels, it can be observed that DLIR generally, but not 
exclusively, showed lower estimates of volumetric error. 
For the soft tissue kernel DLIR-Low renders higher error 
estimates at 0.20, 0.77 and 6.04 mGy. At all dose levels for 
the lung kernel, ASIR-V renders higher  APEvolume values 
than all levels of DLIR. Furthermore, a general and slight 
trend of volumetric error reduction can be observed 
when increasing the strength of DL, especially for the 
lung kernel.

Depicted on the right side of Fig.  2 are the relative 
differences (in percentage) in volumetric error between 

Table 2 Predictor and outcome variables of first multiple linear 
regression analysis with their according F‑statistic

Abbreviations: APEvolume Absolute percentage volumetric error. (Significance 
codes: ***p < 0.001, ** < 0.01, *p < 0.1, ns not significant)

Outcome variable

APEvolume

Predictor variable (main effects) F‑statistic p‑value

Dose 12.60 3.67E‑12***

Reconstruction algorithm 49.69 < 2.2E‑16***

Reconstruction kernel 297.50 < 2.2E‑16***

Predictor variable (interaction effects)
Dose – Reconstruction algorithm 0.69 0.80ns

Dose – Reconstruction kernel 16.55 3.35E‑16***

Reconstruction algorithm – 
Reconstruction kernel

11.70 1.25E‑07***
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on the one hand ASIR-V and on the other hand three 
levels of DLIR. Negative values indicate that inter-
changing ASIR-V for DLIR (low, medium or high 
strength) renders lower volumetric errors. Accordingly, 
positive values show where ASIR-V allowed more accu-
rate volumetric measurement than DLIR. The latter can 
be observed for the comparison between ASIR-V and 
DLIR-Low at 0.20, 0.77 and 6.04 mGy for the soft tis-
sue kernel. In all other cases, interchanging ASIR-V for 
DLIR resulted in higher volumetric accuracy.

Volumetric accuracy at standardized dose
Table  3 summarizes the predictor variables included in 
the multiple linear regression model, their two-way inter-
action terms and strength with which they have an influ-
ence on the estimates of the  APEvolume as determined by 
the F-statistics and p-values. We split the model for the 
two different reconstruction kernels. All main predictor 
variables (reconstruction algorithm, morphology and 
diameter) as well as all their interactions have a signifi-
cant influence on volumetric accuracy.

Fig. 2 Volumetric accuracy in function of dose and grouped by reconstruction algorithm. Left: Absolute percentage volumetric error  (APEvolume) 
in function of radiation dose (mGy) for four different reconstruction algorithms (ASIR‑V 60%, DLIR‑Low, ‑Medium and ‑High) and subdivided for two 
reconstruction kernels (soft tissue and lung kernel). Error bars depict the 95% confidence intervals to display the variability on the estimated 
outcome. Right: Relative difference (%) in  APEvolume of ASIR‑V compared to different levels of DLIR in function of radiation dose, subdivided for two 
reconstruction kernels. Abbreviations:  APEvolume: Absolute percentage volumetric error, ASIR‑V: adaptive statistical iterative reconstruction, DLIR: 
deep learning image reconstruction
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Figures 3 (soft tissue kernel) and 4 (lung kernel) depict 
for a standardized dose, subdivided for the three mor-
phological classes (lobulated, spiculated and smooth nod-
ules) and the six diameter classes (4-9 mm) how different 
reconstruction algorithms influence volumetric error esti-
mates. In both figures the three graphs on the left show 
 APEvolume estimates and three graphs on the right show 
the relative difference in  APEvolume when ASIR-V is com-
pared with DLIR at low, medium and high strength.

General observation for both reconstruction kernels is 
that nodules with smooth margins have lower  APEvolume 
values compared to the lobulated and spiculated nod-
ules. Besides, smooth nodules in all diameter classes 
have overall lower measurement errors when DLIR is 
applied compared to ASIR-V. This is also visible in rela-
tive reduction up to 50% and higher when comparing 
ASIR-V with DLIR. For the lobulated and spiculated 
nodules in the soft tissue kernel (Fig. 3), DLIR induces in 
most cases a reduction in  APEvolume compared to ASIR-V. 
However, all three levels of DLIR at different diameters 
also show some error estimates that are higher than for 
ASIR-V. APE estimates for the soft tissue kernel (Fig. 3, 
left) are overall comparatively lower than those for the 
lung kernel (Fig.  4, left). In all combinations of nodule 
morphology and diameter for the lung kernel results, 
DLIR consistently renders lower  APEvolume estimates 
and related relative reductions in errors in comparison 
to ASIR-V (Fig. 4). A general trend that can additionally 
be seen for the lung kernel results is that especially for 
the smaller diameters, there is a substantial reduction in 
volumetric error when applying DLIR.

Subjective image quality
Exploratory analysis demonstrated that reconstruc-
tion kernel is not a significant predictor variable of 
the outcome variable IQ. Therefore, we did not subdi-
vide results of image quality analysis based on kernel. 
The predictor variables included in the ordinal logistic 
regression model and their two-way interaction terms 
are depicted in Table 4. This table also include the likeli-
hood ratio Chi square statistics and p-values that depict 
the strength with which predictor variables have an 
influence on the outcome variable, perceived subjective 
IQ. All main predictor variables (dose, reconstruction 
algorithm, morphology and diameter) have a significant 
influence on the subjective IQ score. For the interac-
tion effects, only the interaction between diameter and 
reconstruction algorithm showed no significant effect.

Output of the ordinal logistic regression model is 
provided as the probability that certain nodule recon-
structed with either of the four reconstruction algo-
rithms at certain radiation dose is given a particular 
IQ score. Computation of odds ratios (OR) from these 
allows to investigate the potential impact of interchang-
ing ASIR-V for DLIR on the perceived IQ. As such, we 
can derive how much more (OR > 1) or less (OR < 1) 
likely radiologists are to assign a particular image score 
to an image. Figures 5 and 6 display the odds ratios for 
variation of distinctive variables, respectively dose, mor-
phology and diameter. As there was no additional bene-
fit or difference when looking at the three strength levels 
of DLIR separately, those three are displayed compared 
to ASIR-V in a combined manner.

Table 3 Predictor and outcome variables of second multiple linear regression analysis with their according F‑statistic

Two sub models were made for each of the reconstruction kernel (soft tissue and lung), both at a standardized radiation dose. Abbreviations:  APEvolume: Absolute 
percentage volumetric error. (Significance codes: ***p < 0.001, **p < 0.01, *p < 0.1, ns not significant)

Outcome variable

APEvolume

Soft tissue kernel Lung kernel

Predictor variable (main effects) F‑statistic p‑value F‑statistic p‑value

Reconstruction algorithm 15.77 3.9E‑10*** 76.74 < 2.2E‑16***

Nodule morphology 71.32 < 2.2E‑16*** 13.13 2.2E‑06***

Nodule diameter 56.29 < 2.2E‑16*** 66.09 < 2.2E‑16***

Predictor variable (interaction 
effects)
Reconstruction algorithm – Nodule 
morphology

4.31 2.5E‑04*** 4.05 4.8E‑04***

Reconstruction algorithm – Nodule 
diameter

2.73 3.6E‑04*** 4.09 2.1E‑07***

Nodule morphology – Nodule 
diameter

50.29 < 2.2E‑16*** 15.03 < 2.2E‑16***
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It can be seen on Fig. 5 that for a dose of 1.54 mGy radi-
ologists are about just as likely to give the same IQ score 
to images reconstructed with ASIR-V and DLIR. For 
a dose of 0.20 mGy, it is apparent that DLIR on the one 
hand increases odds to give an IQ score of 3 or higher 

and on the other hand strongly reduces the odds to give 
an IQ score of 1 or 2. This is also visible for 0.41 and 0.77 
mGy, but less pronounced. In contrast, because of the 
high odds for an IQ score of 5 with ASIR-V, it is compar-
atively less likely that the same IQ score will be given to 

Fig. 3 Volumetric error estimates for different nodule morphologies and diameters, at standardized radiation dose with soft kernel. Left: Absolute 
percentage volumetric error  (APEvolume) for four different reconstruction algorithms (ASIR‑V 60%, DLIR‑Low, ‑Medium and ‑High). Error bars 
depict the 95% confidence intervals to display the variability on the estimated outcome. Right: Relative difference (%) between  APEvolume values 
of ASIR‑V compared to different levels of DLIR. Abbreviations:  APEvolume: Absolute percentage volumetric error, ASIR‑V: adaptive statistical iterative 
reconstruction, DLIR: deep learning image reconstruction
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an image with DLIR at 3.03 and 6.04 mGy. Nevertheless, 
higher odds for DLIR for an IQ score of 4 are detected, 
but then again the odds for relatively worse IQ scores (≤ 
3) are also larger at these radiation doses.

Based on this, and considering the initial approach 
of this study in relation to LCS, we emphasized further 
analysis on radiation doses up to 1.54 mGy. Figure 6 left 
and right show the odds ratios, respectively for nodule 

Fig. 4 Volumetric error estimates for different nodule morphologies and diameters, at standardized radiation dose with lung kernel. Left: Absolute 
percentage volumetric error  (APEvolume) for four different reconstruction algorithms (ASIR‑V 60%, DLIR‑Low, ‑Medium and ‑High). Error bars 
depict the 95% confidence intervals to display the variability on the estimated outcome. Right: relative difference (%) between  APEvolume values 
of ASIR‑V compared to different levels of DLIR. Abbreviations:  APEvolume: Absolute percentage volumetric error, ASIR‑V: adaptive statistical iterative 
reconstruction, DLIR: deep learning image reconstruction
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morphology and nodule diameter. In these cases, no 
great discrepancies in the results in general are appar-
ent among the different morphologies and the diam-
eter classes themselves. Nonetheless, this representation 
shows how DLIR increases the odds to assign the two 
highest IQ scores (4 and 5) also for the nodules with 
irregular margins and relatively smaller diameters. Once 
again, DLIR overall increases odds to give an IQ score 
higher than 3 while strongly reducing the odds to give an 
IQ score of 1 or 2.

Discussion
In the present study, results show that DLIR performs at 
least as good as the standardly used ASIR-V reconstruc-
tion algorithm in terms of volumetric accuracy and sub-
jective IQ in an anthropomorphic chest phantom. DLIR 
has rendered valuable results for both investigated met-
rics at the lower radiation doses, which can have poten-
tial for low-dose CT LCS programs. Radiation-induced 
cancers should be considered as a harm and potential 
risk related to repeated low-dose CT screening [4]. More 
advanced CT scanners and state-of-the art software must 
ensure that screening can be conducted at dose levels far 
below those at the time of the large LCS trials. As such, 

this dose reduction could be achieved with the imple-
mentation of DLIR.

Previous studies have shown that DLIR outperforms 
conventional reconstruction algorithms in terms of noise, 
contrast and nodule detection [19], particularly at the 
lower doses. In our anthropomorphic phantom setting, 
we found that DLIR resulted in the least error in nodule 
volume measurements (Fig.  2). Especially in the doses 
lower than 1 mGy, DLIR outperforms ASIR-V in terms 
of volumetric accuracy. At the three lowest doses under 
investigation (0.20, 0.41 and 0.77 mGy) DLIR reduced the 
percentage error of volume measurements up to 33% for 
the soft tissue kernel and up to 52% for the lung kernel. 
At 0.41 and 0.77 mGy for both reconstruction kernels, 
DLIR-high showed  APEvolume values that are almost equal 
to those at the highest dose under investigation (6.04 
mGy). Consequently, applying DLIR instead of ASIR-V 
allows highly accurate nodule volume measurement at 
greatly reduced CT doses.

Furthermore, DLIR shows a higher perceived subjec-
tive IQ at the sub-mGy doses (0.20, 0.41 and 0.77 mGy). 
Images reconstructed with DLIR are almost 9 times more 
likely than ASIR-V to render subjective IQ levels as good 
as high dose images of 11 mGy (Fig.  5). The increased 
odds of DLIR to provide higher subjective IQ are related 
to lower noise levels and higher contrast while main-
taining a more natural appearance of the images after 
reconstruction. These results go hand in hand with the 
improved volumetric accuracy at the lower doses. Several 
studies have previously reported that DLIR indeed scores 
better than ASIR-V in terms of objective, task-based 
image quality characteristics in technical phantoms [12, 
15, 20, 31]. As such, the images reconstructed with DL 
present nodule margins that are less blurred and more 
distinguishable for the semi-automatic segmentation 
and volumetry tool. In addition, our results confirm that 
DLIR has the potential to reconstruct images acquired at 
ultra-low doses that have a more natural appearance and 
seem to be preferred by radiologists.

In this study we opted to conduct subjective IQ anal-
ysis at various dose levels. Question arises why at the 
higher doses, such as 6.04 mGy, IQ scores of images 
reconstructed with DLIR do not remain at the highest 
level. This phenomenon was also observed in the study 
of Higaki et al. where they compared noise properties of 
FBP, two types of IR (hybrid and model based) and DLIR 
at different radiation doses [29]. The study reported supe-
rior IQ in terms of noise properties and spatial resolution 
for IR at high radiation exposure. Similarly, reduction in 
dose showed on the other hand improved features for 
DLIR.

Reconstruction kernel is an image acquisition param-
eter that also seems to strongly influence volumetric 

Table 4 Predictor and outcome variables of the ordinal logistic 
regression analysis with their according Chi square statistic

At the bottom of the table, the Lipsitz goodness of fit test for ordinal logistic 
models is presented. Abbreviations: IQ: image quality, LR: likelihood ratio. 
(Significance codes: ***p < 0.001, **p < 0.01, *p < 0.1, ns not significant)

Outcome variable

IQ score

Predictor variable (main 
effects)

LR Chi square 
statistic

p‑value

Dose 3390.90 < 2.2E‑16***

Reconstruction algorithm 32.70 3.8E‑07***

Nodule morphology 152.10 < 2.2E‑16***

Nodule diameter 17.00 4.4E‑03**

Predictor variable  
(interaction effects)

Dose – Reconstruction algorithm 332.70 < 2.2E‑16***

Dose – Nodule morphology 33.00 2.7E‑04***

Dose – Nodule diameter 60.90 7.8E‑05***

Reconstruction algorithm – 
Nodule morphology

14.10 2.9E‑02*

Reconstruction algorithm – 
Nodule diameter

14.00 5.3E‑01ns

Nodule morphology – Nodule 
diameter

103.30 < 2.2E‑16***

Goodness of fit test LR statistic p‑value

Lipsitz test for ordinal response 
models

4.39 0.88ns
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accuracy while we did not see any influence with respect 
to subjective IQ. It is known that the reconstruction ker-
nel affects the distribution of pixel values and shifts the 
image noise pattern [17, 40]. With respect to volumetry, 
it has previously been observed that the segmentation 
and volumetric accuracy of AI software is affected by 
sharpness of the kernel [41]. As reported by other stud-
ies, the higher the kernel’s value, the sharper the bound-
ary will be between lung nodules and the surrounding 
lung parenchyma or bronchi [41]. As such, it could be 
expected that in our set-up with the Lungman phantom, 
application of the lung kernel accordingly gives rise to 

sharper edges between lung nodules and air or lung ves-
sels. However, the theoretical improvement of the spatial 
resolution of a harder kernel occurs at a cost of increasing 
the noise. In our study, this translates indeed in the fact 
that absolute volumetric errors, irrespective of the recon-
struction algorithm, do lie higher for the lung kernel than 
for the soft tissue kernel at every radiation dose (Fig. 2). 
However, the lung kernel in combination with additional 
DLIR in term resulted in more accurate semi-automatic 
segmentation and greater reductions in volumetric errors 
compared to ASIR-V for the same kernel. While DLIR 
in combination with different kernels improves spatial 

Fig. 5 Odds on IQ score with ASIR‑V compared to DLIR per radiation dose. Odds ratio (OR) between the odds for ASIR‑V 60% to assign an IQ score 
(Odds IQ  scoreASIR‑V) and the odds for DLIR to give the same IQ score (Odds IQ  scoreDLIR) grouped by radiation dose. The dotted line indicates 
where both odds are just as likely to occur for both reconstruction algorithms. Each IQ score (1 to 5) is presented by different color, as depicted 
by the numbers on the y‑axis. Abbreviations: IQ: image quality, ASIR‑V: adaptive statistical iterative reconstruction, DLIR: deep learning image 
reconstruction
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resolution and as such volumetry, this benefit is not as 
straightforward for noise properties. The study of Choe 
et  al. demonstrated that assessment and reproducibility 
of (intra)tumor heterogeneity and texture characteriza-
tion is highly dependent on the reconstruction kernels 
with which images were acquired [40]. Therefore, it could 
be expected that our logistic regression analysis would 
also show significant influence of reconstruction kernel 
on the IQ scores. However, this analysis indicated that 
radiologists in our study did not experience any effect 
of the reconstruction kernel when scoring subjective IQ. 
This might be attributable to the fact that all nodules had 
the same density of a solid nodule and where still mostly 
spherical. As such, it could be that nodules with different 
densities and more complex morphologies are more sus-
ceptible to the influence of reconstruction kernel on per-
ceived subjective IQ. Nevertheless, our results confirm 
that the choice of the image acquisition parameter recon-
struction kernel potentially influences study results and 
affects intercomparison and generalizability of different 
CT acquisitions [40]. The kernel appears to be an impor-
tant technical parameter of the CT protocol besides the 
reconstruction algorithm and should therefore be inte-
grated in research questions and study set-ups.

It has been described that DL reconstructed images of 
perfectly smooth nodules generally show the most accu-
rate volume measurements in phantom studies compared 
to other reconstruction algorithms [31]. Figures  3 and 4 
of this study also show that smooth nodules overall have 
the lowest  APEvolume values for all levels of DLIR. Addi-
tionally, our study incorporated 3D-printed nodules with 
lobulated and spiculated margins in order to comprehen-
sively characterize volumetric accuracy and IQ. Nodules 
without smooth surface and that are relatively smaller in 
diameter would be expected to give rise to higher inaccu-
racies in volume measurement and relatively poor quality 
due to smudged out margins on CT images. Remarkably, 
our results present that these “more challenging” nodules 
on images reconstructed with DL actually have volumet-
ric accuracies and subjective IQ which are comparable to 
or even better than those of smooth nodules of the 9 mm 
diameter class (Fig. 6). For all levels of DLIR, lobulated and 
spiculated nodules with diameters of 4 and 5 mm have 
extreme reductions in APE. In addition, these nodules on 
DLIR images have higher odds of scoring above average 
IQ than for the same nodules on ASIR-V images. Hence, 
extreme dose reduction to sub-mGy levels is also pos-
sible for nodules with irregular shapes. This makes DLIR 

Fig. 6 Odds on IQ score with ASIR‑V compared to DLIR per nodule morphology and diameter. Odds ratio (OR) between the odds for ASIR‑V 
to ascribe an IQ score (Odds IQ  scoreASIR‑V) and the odds for DLIR to give the same IQ score (Odds IQ  scoreDLIR) grouped by nodule morphology (left) 
and nodule diameter class (right). The dotted lines indicate where both odds are just as likely to occur for both reconstruction algorithms. Each IQ 
score (1 to 5) is presented by different color, as depicted by the numbers on the y‑axis. Abbreviations: IQ: image quality, ASIR‑V: adaptive statistical 
iterative reconstruction, DLIR: deep learning image reconstruction
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especially interesting for application in LCS CT imaging as 
it is the purpose of screening to detect nodules as early as 
possible and distinguish morphological characteristics that 
could point in the direction of malignancy.

Despite the undeniable advantages of DLIR shown in 
our standardized anthropomorphic setting, there are sev-
eral limitations to this study. First of all, AI and DL tech-
nologies are still so-called black boxes and phenomena 
like information loss or hallucinations are never com-
pletely ruled out. Even though our study confirms the 
results of other studies showing a potential added benefit 
of DLIR [15, 17, 21, 22, 29–31]; one should always take 
into consideration that DL-based algorithms are not fully 
understood by the people adapting them. Furthermore, 
results with regard to DLIR are reported to be vendor 
specific and they can be influenced by the fact that DL 
frameworks are either too generic or too finely tuned for 
specific cases [10, 42]. Since AI-based tools often come 
with severe expenditures to fully implement in clinical 
practice, it is fundamental to characterize them compre-
hensively. Secondly, generalization of results still needs to 
acknowledge that a phantom was used in this study. The 
Lungman phantom lacks structures equivalent to the lung 
parenchyma and lobe fissures. Besides, the low density of 
the surrounding air is different than that of normal lung 
tissue in patients. Although our set of 3D-printed nod-
ules included lobulated and spiculated shapes in addition 
to smooth ones, we realize that these are nonetheless less 
complex than some morphologies encountered in daily 
clinical practice. Lastly, even though we corrected for 
interreader variability in the ordinal logistic regression 
model, we realize that the analysis of the reproducibility 
of IQ scoring over time (intrareader variability) also is an 
important factor to include in future study set-ups.

Several future research proposals have emerged in our 
research group from this study. If DLIR were to get a funda-
mental role in the performance of LCS, its adaptability and 
added value in practical use needs to be confirmed. We want 
to assess the usefulness of DLIR on more image datasets that 
have different noise levels, that are acquired on other CT 
scanners and that are reconstructed with DLIR of multiple 
vendors in an anthropomorphic setting. Besides, computer-
aided detection (CAD) tools are increasingly made avail-
able by AI companies. These tools are developed to perform 
nodule detection in combination with nodule volumetry 
and growth rate calculation, in theory without the interfer-
ence and initiation of the radiologist [26, 41]. Future studies 
need to determine whether this fully automated workflow 
of the software algorithms has the potential to improve the 
accuracy and to ease clinical work. Lastly, to accommodate 
to the diversity in which lung cancer can take form in a 
clinical setting, we want to expand our nodule set. Although 
nodules with different margins were included, many other 

morphological characteristics contribute to the assessment 
of malignancy in clinical practice [23]. These additional fea-
tures, such as subsolid nodules with ground glass compo-
nent and more irregular shapes, need to be incorporated to 
evaluate the impact DLIR has on those features.

Conclusion
We have observed that DLIR provides promising results 
that are at least as good as those obtained with the ASIR-
V reconstruction algorithm in an anthropomorphic study 
set-up for low-dose chest CT. Essentially, DLIR allows to 
achieve notable dose reductions of chest CT onto a level 
of ultra-low sub-mGy levels while maintaining excellent 
volumetric accuracy in combination with above aver-
age IQ. With the rise of LCS research and implementa-
tion, radiation dose reduction has obtained an even more 
prominent role. DLIR has the potential to keep exposure 
of participants as low as possible without compromising 
on volumetric accuracy and IQ, even for lung nodules 
with small diameters and irregular margins. Besides the 
reconstruction algorithm, we found that application of 
different reconstruction kernels substantially influences 
volumetry on CT images despite being an image acquisi-
tion parameter that is often not the focus of research or 
disregarded in (screening) guidelines and scan protocols. 
In any case, standardized chest CT protocols, defined by 
well-considered image acquisition parameters are funda-
mental for a high-quality lung cancer screening program.
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