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Abstract
Background  Prostate-specific membrane antigen (PSMA) PET/CT imaging is widely used for quantitative image 
analysis, especially in radioligand therapy (RLT) for metastatic castration-resistant prostate cancer (mCRPC). Unknown 
features influencing PSMA biodistribution can be explored by analyzing segmented organs at risk (OAR) and lesions. 
Manual segmentation is time-consuming and labor-intensive, so automated segmentation methods are desirable. 
Training deep-learning segmentation models is challenging due to the scarcity of high-quality annotated images. 
Addressing this, we developed shifted windows UNEt TRansformers (Swin UNETR) for fully automated segmentation. 
Within a self-supervised framework, the model’s encoder was pre-trained on unlabeled data. The entire model was 
fine-tuned, including its decoder, using labeled data.

Methods  In this work, 752 whole-body [68Ga]Ga-PSMA-11 PET/CT images were collected from two centers. For 
self-supervised model pre-training, 652 unlabeled images were employed. The remaining 100 images were manually 
labeled for supervised training. In the supervised training phase, 5-fold cross-validation was used with 64 images for 
model training and 16 for validation, from one center. For testing, 20 hold-out images, evenly distributed between 
two centers, were used. Image segmentation and quantification metrics were evaluated on the test set compared to 
the ground-truth segmentation conducted by a nuclear medicine physician.
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Background
Prostate cancer (PC) is the most prevalent malignancy 
in men and ranks as the third leading cause of cancer-
related deaths among men worldwide [1, 2]. The limited 
efficacy of advanced treatment options often leads to dis-
ease progression in many cases of PC toward metastatic 
castration-resistant prostate cancer (mCRPC) [3–5]. A 
multidisciplinary approach should be used at this stage, 
including chemotherapy, external beam radiotherapy, 
radioligand therapy (RLT), and hormonal therapies [6–8].

Prostate-specific membrane antigen (PSMA) is a 
transmembrane glycoprotein, physiologically expressed 
in several tissues [9, 10]. A high expression of PSMA is 
observed on the surface of most primary prostate cancer 
cells and metastatic lesions [11, 12]. PSMA is an effec-
tive target for PC imaging and therapy, such as its label-
ing with 68Ga and 177Lu as theranostics pair [2, 7, 13–15]. 
PSMA-focused positron emission tomography/ com-
puted tomography (PET/CT) imaging, especially with 
[68Ga]Ga-PSMA-11, has become the gold standard in PC 
diagnosis [16]. Because of its unparalleled sensitivity and 
specificity in lesion detection, it enables precise identifi-
cation of metastatic sites [17, 18]. PSMA PET/CT shows 
promise for various purposes, such as early recurrence 
detection, prognosis, (re)staging, treatment planning, 
treatment follow-up, response rate, and dose prediction 
[19, 20]. However, its practical use in these applications 
is limited by labor-intensive and error-prone manual 
segmentation.

Deep learning (DL) models are increasingly used 
for semi-automated and automated segmentation in 
PSMA PET/CT [19–24]. However, accurate segmen-
tation remains a significant challenge due to various 
factors. These include noise, motion artifacts, and dif-
ferences in the location, texture, shape, and appearance 
of tumors among patients [25]. Developing a precise 
tumor segmentation model that minimizes false positive 
annotations in PET/CT image analysis is crucial, espe-
cially for scans with widespread lesion metastases like 

[68Ga]Ga-PSMA-11 PET/CT of mCRPC cases. Mean-
while, the initial segmentation of normal organs with 
consistent spatial characteristics can pave the way for 
automated tumor segmentation.

Over the past decade, various artificial intelligence (AI) 
techniques in medical imaging have emerged [26, 27]. 
Many studies have focused on supervised learning algo-
rithms and convolutional neural networks (CNNs) in 
medical image segmentation, particularly PET or PET/
CT segmentation [24]. Despite their growing popular-
ity, these methods have limitations; their limited recep-
tive field is one of their drawbacks. Introducing the vision 
transformer (ViT) revolutionized computer vision with 
its capability to learn global and local information [28]. 
ViTs employ self-attention blocks that process a more 
comprehensive range of image patches, encoding visual 
representations as sequences. This approach allows them 
to model global information more effectively, overcoming 
some limitations inherent in CNNs [28].

Traditional algorithms highly depend on abundant, 
accurately labeled data, while gathering and accurately 
annotating data for medical tasks is challenging for 
such algorithms. To address this issue, a novel learning 
paradigm known as self-supervised learning (SSL) has 
emerged [29]. SSL is a type of unsupervised learning that 
does not need explicit labels for the data. Instead, it gen-
erates pseudo-labels from the data using pretext tasks, 
such as masking, predicting, or reconstructing parts of 
the data [30]. The models can learn meaningful and gen-
eralizable data representations by solving these pretext 
tasks, which can then be used for downstream tasks, such 
as segmentation or classification. SSL offers a promising 
alternative to traditional algorithms, as it can leverage 
the abundant unlabeled data in the medical domain. This 
approach can reduce the dependence on human annota-
tions, where annotating and masking such data is chal-
lenging, as it requires expert knowledge, consensus, and 
privacy protection [31].

Results  The model generates high-quality OARs and lesion segmentation in lesion-positive cases, including mCRPC. 
The results show that self-supervised pre-training significantly improved the average dice similarity coefficient (DSC) 
for all classes by about 3%. Compared to nnU-Net, a well-established model in medical image segmentation, our 
approach outperformed with a 5% higher DSC. This improvement was attributed to our model’s combined use of self-
supervised pre-training and supervised fine-tuning, specifically when applied to PET/CT input. Our best model had 
the lowest DSC for lesions at 0.68 and the highest for liver at 0.95.

Conclusions  We developed a state-of-the-art neural network using self-supervised pre-training on whole-body 
[68Ga]Ga-PSMA-11 PET/CT images, followed by fine-tuning on a limited set of annotated images. The model generates 
high-quality OARs and lesion segmentation for PSMA image analysis. The generalizable model holds potential for 
various clinical applications, including enhanced RLT and patient-specific internal dosimetry.

Keywords  Prostate cancer, PSMA, PET/CT, Segmentation, Lesion detection, Neural network, Deep-learning, Swin 
UNETR, Self-supervised learning
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In the present work, we performed and evaluated the 
shifted windows UNEt TRansformers (Swin UNETR), a 
hierarchical ViT, for a fully automated patient segmen-
tation of [68Ga]Ga-PSMA-11 PET/CT images. This 3D 
transformer-based model has previously shown remark-
able performance in 3D semantic segmentation tasks in 
various medical modalities, including magnetic reso-
nance imaging and computerized tomography (CT) 
scans [32, 33]. After extensive experimentation, which 
involved exploring various aspects of network design, 
we successfully implemented a configuration that con-
sistently yielded superior results for 3D volume PET/CT 
images. This configuration effectively captures contextual 
information from neighboring regions while maintain-
ing computational efficiency and preserving the global 
context. In this regard, we initially pre-trained the mod-
el’s encoder on unlabeled data within a self-supervised 
framework. This framework involved three proxy tasks: 
rotation prediction, inpainting, and contrastive coding. 
Subsequently, the entire model was fine-tuned, including 
its decoder, using labeled data annotated meticulously by 
experts.

Our code is available at: https://github.com/ElmiraYaz-
dani/Lesions-OARs-Segmentation-PSMA-PETCT-SSL-
SwinUNETR.

Materials and methods
Data description
The inclusion criteria for the retrospective study com-
prised cases with a [68Ga]Ga-PSMA-11 PET/CT scan 
conducted between January 2021 and June 2023. The 
exclusion criteria were those with insufficient image 
quality, low dose, or those cases where PET or CT scan 
data were absent from the database. Patients underwent 
[68Ga]Ga-PSMA-11 PET/CT scans for clinical purposes, 
including (re)staging or treatment response assessment. 
A low-dose CT non-contrast image was acquired to cor-
rect attenuation and determine anatomical location. The 
study was conducted according to local research commit-
tee requirements and ethical guidelines.

The production of 68Ga used a standard 68Ge/68Ga 
generator, and the labeling of PSMA-HBED-CC with 
68Ga was performed. The dataset included 752 PET/CT 
images from two nuclear medicine centers, i.e., center A 
(Siemens BioGraph6 TruePoint TrueV, 408 patients) and 
center B (Siemens BioGraph6 TruePoint, 344 patients) 
following the intravenous injection of 150–220 MBq 
[68Ga]Ga-PSMA-HBED-CC.

Prior to the study, quality control of the protocol at 
each site revealed no evidence of bias [34]. A 3-D acqui-
sition mode was used for all PE/CT images following a 
45 to 60-minute uptake period from the skull to the mid-
thigh. Subsequently, decay and scatter correction were 
applied, and images underwent iterative reconstruction 

with attenuation correction. The PET images were inten-
sity normalized based on injected activity and body 
weight to derive standard uptake values (SUVs).

The reconstructed PET transaxial image sizes are 
168 × 168 matrices (voxel size 4.07  mm × 4.07  mm × 
3  mm) and 512 × 512 matrices (voxel size 0.97  mm × 
0.97 mm × 3 mm) for CT images. The transaxial PET/CT 
image extent ranged between 274 and 474 planes per vol-
ume, depending on the subject’s height. Initially, a low-
dose CT scan was conducted using settings of 110 kVP, 
covering the region from the skull to the mid-thigh. Sub-
sequently, PET imaging was carried out over the same 
anatomical area, with scan times lasting 3 or 4  min per 
bed position, dependent on the patient’s weight.

The pre-training dataset included 652 
[68Ga]Ga-PSMA-11 PET/CT images, compromising 
both lesion-positive and lesion-negative cases. Addi-
tionally, 100 independent labeled images were used for 
fine-tuning and model evaluation. This dataset included 
[68Ga]Ga-PSMA-11 PET/CT images collected from 100 
lesion-positive patients. Comprehensive patient char-
acteristics, including PET/CT indications and patient 
demographics, are provided in Supplementary Informa-
tion S1. All 100 patients had clinical reports indicating 
the presence of tumoral lesions. The included patients 
in the study had a mean age of 68.8 ± 8.29 years (range 
of 41–93 years) at the imaging time. All images were for-
matted to NifTI format.

Image segmentation and labels
In the 100 images examined during fine-tuning and 
model evaluation, lesions and OARs were carefully delin-
eated. This process was conducted by a nuclear medicine 
physician with over five years of proficiency in hybrid 
imaging and a background in machine learning research 
using a visually determined threshold for each patient. 
Another expert cross-checked these delineations to 
ensure accuracy. The segmentation of OARs and lesions 
involved converting them into 3D masks with dimen-
sions matching those of the PET and CT images. Bilat-
eral organs combined into a single class (e.g., the left and 
right kidneys were labeled as “kidneys”), resulting in 10 
OARs, lesions, and backgrounds for automated segmen-
tation. Six bilateral segmented structures contained the 
lacrimal glands, parotid glands, submandibular glands, 
tubarial glands, sublingual glands, and kidneys. Four uni-
lateral segmented structures included the spleen, liver, 
bowel (small and large), and bladder.

We collectively categorized primary tumors (if not 
surgically removed), lymph node metastases, bone 
metastases, and visceral metastases under the label 
“lesions”. A contour was manually delineated around 
OARs and lesions using the “Segment Editor” tool of 
the free, open-source 3D Slicer 5.2.2 software. The 

https://github.com/ElmiraYazdani/Lesions-OARs-Segmentation-PSMA-PETCT-SSL-SwinUNETR
https://github.com/ElmiraYazdani/Lesions-OARs-Segmentation-PSMA-PETCT-SSL-SwinUNETR
https://github.com/ElmiraYazdani/Lesions-OARs-Segmentation-PSMA-PETCT-SSL-SwinUNETR
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“PETTumorSegmentation” module within the “Segment 
Editor” was employed for tumor lesion segmentation 
with manual interventions and corrections. This mod-
ule uses a semi-automated approach that transforms 
the segmentation problem into a graph-based optimiza-
tion problem. This module constructs a graph structure 
around a user-provided lesion center point, and a suit-
able cost function is derived from local image statistics 
[1]. To ensure precision and accuracy, another physician 
reviewed cases of ambiguity.

Among the OARs, the kidneys, liver, and spleen were 
delineated using CT-only slices. In this regard, kidneys 
were segmented using a visually selected threshold [35]. 
Transversal slices were manually refined to include the 
cortex and medulla, while excluding the renal pelvis, ves-
sels, cysts, and adjacent structures. For liver and spleen 
delineation, ROIs were manually drawn once every two 
to three slices, and the slices were interpolated, and our 
physician refined the results. PET-only slices were used 
to segment the lacrimal and tubarial glands because of 
their small sizes.

Due to the highly variable uptake intensity of bowel 
structures, the absence of a reliable semi-automated 
method necessitated visual threshold segmentation. 
To ensure accurate results, our physician carefully ana-
lyzed and segmented PET and CT slices, and the sec-
ond physician was included in cases of disagreement. 
The same approach was also applied for bladder and 
bulk prostate tumors. Figure  1 displays a whole-body 
[68Ga]Ga-PSMA-11 PET/CT scan. It shows segmented 
OARs and lesions in various views - transaxial, coronal, 
sagittal, maximum intensity projection (MIP), and 3D - 
all achieved using the 3D Slicer software.

Data preprocessing
The data was preprocessed and adapted to meet the input 
requirements of the model as part of the standardization 

process. CT slices were down-sampled using B-Spline 
interpolation to align with the coordinates of their cor-
responding PET images. This process resulted in both CT 
and PET images having the exact dimensions (168 × 168) 
and voxel size (4.07 mm × 4.07 mm × 3 mm). The ana-
tomical alignment between PET and CT images was 
maintained. Three slices from the beginning and end 
of the PET image series were removed to reduce noise 
caused by low count accumulation in the first and last 
slices due to decreased sensitivity in the PET scanner’s 
outer rings.

The PET intensity values were expressed using an SUV, 
while the Hounsfield unit or HU was employed for CT 
intensity values. Typically, PET voxel values fell within 
the mean range of 0 to 50. Considering the urinary clear-
ance of the radiotracer, the highest SUVmax was noted in 
the kidneys and bladder. For CT images, a window level 
of 400 and a window width of 600 were considered, and 
the HU values were clipped between − 200 and 1000 
HU to enhance the contrast of soft tissues and lesions 
(based on consultation with the nuclear medicine physi-
cian). Subsequently, CT and PET values were normalized 
between 0 and 1 using Eq. 1.

	
Xnorm =

(X −Xmin)

(Xmax −Xmin)
� (1)

Network architecture
This study used the Swin UNETR model as illustrated in 
Fig. 2, which uses a Swin Transformer as its encoder, as 
described in reference [36]. This hierarchical vision trans-
former employs shifted windows to capture local and 
global information. It incorporates a CNN-based decoder 
with skip connections at different various resolutions. 
To determine the optimal configuration, we conducted 
extensive experiments varying sub-volume size, patch 

Fig. 1  [68Ga]Ga-PSMA-11 PET/CT image of a mCRPC patient with segmented targets in transaxial, coronal, sagittal, MIP, and 3D views from left to right 
using 3DSlicer 5.2.2 software
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size, and window size. Remarkably, the most effective 
configuration we found involved relatively minor adjust-
ments compared to the original configuration [36]. The 
following provides a concise description of the encoder 
and decoder components.

Encoder
The encoder processes a sub-volume of the image, 
employing a patch portioning layer that divides the 
input into non-overlapping 3D tokens of size H×W×D. 
These patches are then transformed into a sequence with 
dimension C (here, C = 48). For efficient modeling of 
token interactions, the partitioning stage divides tokens 
into non-overlapping windows, and self-attention is then 
computed among the tokens within each window.

At a given layer l , in the transformer encoder, win-
dows of size M × M × M was used to divide a 3D token 
into regions of (H/M, D/M, W/M). Then, at the following 
layer l + 1, these regions are shifted by (M/2, M/2, M/2) 
voxels. The outputs of layers l  and l + 1 undergo process-
ing through the Swin Transformer block (see Fig. 2 Swin 
Transformer Block), which has two transformer blocks in 
sequence. The first block uses window-based multi-head 
self-attention (W-MSA) to compute self-attention within 
each window. In contrast, the second block uses a shifted 
window-based multi-head self-attention (SW-MSA) to 
compute the self-attention across the shifted windows. A 
3D cyclic-shifting method was employed to enhance the 
efficiency of batch computation for shifted windowing 
[36].

The encoder operates on patches of size 2 × 2 × 2, with 
a feature dimension of 2 × 2 × 2 × 2 = 16, considering the 
input has two channels (PET/CT), which transforms 

them into a 48-dimensional embedding space using a 
linear layer. The encoder architecture consists of four 
stages, each containing two transformer blocks. Between 
each stage, a patch merger layer decreases the resolution 
by half. Stage one includes a linear embedding layer and 
transformer blocks. In addition, a patch merging layer 
combines patches with a resolution of 2 × 2 × 2, concat-
enating them to yield a feature embedding with a dimen-
sion of 4  C. Subsequently, a linear layer is employed to 
downsample the resolution by reducing the dimension to 
2 C. This process persists in stages two, three, and four, 
resulting in feature representations at different levels. 
These hierarchical features are helpful for downstream 
applications, such as segmentation.

Decoder
The decoder part of the model is connected to the 
encoder through skip connections, forming a U-shape 
architecture for our primary task, image segmentation. 
Output sequence representations (see Fig. 2 Hidden Fea-
tures) from five stages are extracted, reshaped, and fed 
into a residual block, which consists of two post-normal-
ized 3 × 3 × 3 convolutional layers with instance normal-
ization (See Fig. 2 Res. Block). Then, features from each 
stage are up-sampled through a deconvolution layer and 
concatenated with processed features from the previous 
layer. The concatenated features are fed into a residual 
block with the abovementioned detail. Subsequently, 
the processed features from the input volume and the 
encoder output are combined and fed into a residual 
block. Finally, the segmentation probabilities are com-
puted using a 1 × 1 × 1 convolutional layer with a softmax 
activation function.

Fig. 2  Architecture of the Swin UNTER used in this study. The PET/CT input images undergo processing in the encoder, consisting of four stages, with 
each stage connected to the decoder through skip connections. Within the encoder, the dimensions of the images progressively decrease at each stage 
until reaching the bottleneck. Subsequently, in the decoder, the dimensions of the features increase as they ascend through deconvolution layers. The 
network guidelines are outlined in Supplementary Fig. S1
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Pre-training
We adopted a self-supervised pre-training framework 
described in reference [33]. This approach involved three 
proxy tasks: image rotation prediction, image volume 
inpainting, and contrastive coding. These tasks were 
used to learn meaningful representations of human body 
organs within images. In the pre-training phase, only the 
encoder part of the model is pre-trained, and after pre-
training, the encoder is combined with the decoder part. 
A projection head is attached to the encoder during the 
pre-training phase for each task, three heads at all. Sub-
sequently, these projection heads are removed during the 
fine-tuning phase, and the entire model is fine-tuned on 
label data.

During the training phase, sub-volumes are randomly 
cropped from the input image. All data points in a mini-
batch undergo stochastic data augmentations, which 
include two transformations: random rotations and cut-
outs. This process generates two distinct views of the 
same sub-volume, enhancing the model’s learning capac-
ity. The pre-training loss function calculation is described 
in the supplementary information S2.

Experiments
The experiments were conducted in five phases. In the 
first two experiments, we utilized nnU-Net, a widely 
recognized network for medical image segmentation 
tasks, to conduct PET-only nnU-Net and PET/CT nnU-
Net experiments. This approach allowed us to bench-
mark and compare our proposed network against the 
established results obtained using nnU-Net. For the 
subsequent three experiments, the proposed model 
was initially trained using only the PET imaging. Subse-
quently, both PET and CT images were incorporated for 
training. These phases involved training the models with 
random weight initialization and without self-supervised 
pre-training. In the last experiment, we used pre-trained 
weights obtained through self-supervised pre-training 
and fine-tuned the model on our labeled data.

During the pre-training phase, among 752 whole data-
sets, the encoder was trained on 652 unlabeled PET/
CT images (318 from center A and 334 from center B). 
In the fine-tuning phase, the model was fine-tuned on 
100 remainder labeled images (90 from center A and 
10 from center B) using dice + cross-entropy (DiceCE) 
loss function (Eq.  2), where P and G represent the pre-
dicted segmentation and ground-truth segmentation, 
respectively. To assess the model’s performance, we set 
aside 20 images, of which 10 belonged to center A and 
the remaining were from center B, as an independent 
test set. The remaining 80 images were used for training 
and a 5-fold cross-validation approach was employed. In 
each fold, the data was divided into 64 images for train-
ing and 16 images for testing. Cross-validation was used 

to select and evaluate the best model on the independent 
test dataset.

	

DiceCE = Dice Loss + CE

=

(
1− 2

∑N
i=1 PiGi∑N

i=1 Pi +
∑N

i=1Gi

)

+

(
−1

n

∑N

i=1

∑K

k=1
Pi,kGi,k

)
� (2)

In our pre-training phase, 30% of 3D volumes were 
masked out in the volume inpainting task. For 3D con-
trastive coding, an embedding size of 512 was employed, 
and the rotation prediction task involved four classes cor-
responding to angles of 0, 90, 180, and 270 degrees. The 
AdamW optimizer was utilized with a warm-up cosine 
scheduler for the first 500 iterations and training was 
conducted for 250k iterations [37]. A batch size of 4 with 
a patch size of 96 × 96 × 96 was used, alongside an initial 
learning rate of 1e-6 and a learning decay rate of 1e-5.

The learning rate was adjusted to 1e-4 during the fine-
tuning, and the model underwent extensive training for 
1000 epochs. We employed PyTorch 1.13 and MONAI 
0.9 libraries to implement the models. All models were 
trained on NVIDIA RTX 3090 GPU with 24 GB GPU 
memory.

Evaluation metrics
To assess our model’s performance, dice similarity coef-
ficient (DSC), recall, and precision metrics were used. 
Further details, including the formulas and definitions of 
each metric, can be found in the supplementary informa-
tion S3.

Results
Table 1 summarizes the averaged DSC values per-patient 
on the test set for each target in five distinct experiments 
(the best values in each row and mean values in the last 
row are emphasized in bold). These experiments utilized 
the nnU-Net model with two configurations, PET-only 
and PET/CT for comparative analysis, as well as three 
configurations for our proposed method: PET-only and 
PET/CT trained without self-supervised pre-training, 
and PET/CT with self-supervised pre-training and fine-
tuning. The same experiments for all targets are summa-
rized in Tables 2 and 3 for precision and recall metrics, 
respectively (the best values in each row and mean values 
in the last row are emphasized in bold). The incorpora-
tion of dual inputs in the network significantly improved 
DSC for all targets compared to using only PET volume, 
regardless of whether using the nnU-Net or our proposed 
method. In this regard, the most substantial improve-
ments were observed in the lacrimal glands, spleen, liver, 
kidneys, bladder, and lesions. In addition, our proposed 
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Table 1  The averaged DSC metric results per-patient in five distinct experiments across all targets on the test set
Dice similarity coefficient

Approach
Target

nnU-Net - PET nnU-Net -PET/CT Proposed method 
- PET

Proposed method - PET/CT 
(without SSL pre-raining)

Proposed 
method - PET/CT
(SSL pre-train-
ing + fine-tuning)

Lacrimal glands 0.75 0.78 0.74 0.80 0.83
Parotid glands 0.86 0.88 0.87 0.88 0.91
Tubarial glands 0.68 0.69 0.70 0.70 0.75
Sublingual glands 0.52 0.68 0.70 0.73 0.77
Submandibular glands 0.81 0.85 0.84 0.85 0.88
Spleen 0.79 0.85 0.82 0.88 0.90
Liver 0.88 0.91 0.88 0.93 0.95
Bowel 0.71 0.75 0.73 0.76 0.81
Kidneys 0.80 0.85 0.80 0.87 0.89
Bladder 0.81 0.83 0.78 0.83 0.86
Lesions 0.55 0.61 0.57 0.65 0.68
Mean 0.75 0.79 0.77 0.81 0.84

Table 2  The averaged precision metric results per-patient in five distinct experiments across all targets on the test set
Precision

Approach
Target

nnU-Net – PET nnU-Net -PET/CT Proposed method -
PET

Proposed method - PET/CT 
(without SSL pre-training)

Proposed 
method - PET/CT
(SSL pre-train-
ing + fine-tuning)

Lacrimal glands 0.63 0.65 0.65 0.73 0.76
Parotid glands 0.80 0.84 0.82 0.84 0.89
Tubarial glands 0.63 0.66 0.64 0.64 0.74
Sublingual glands 0.55 0.61 0.66 0.64 0.70
Submandibular glands 0.80 0.80 0.80 0.79 0.84
Spleen 0.79 0.83 0.81 0.86 0.86
Liver 0.86 0.88 0.88 0.90 0.92
Bowel 0.69 0.73 0.68 0.72 0.78
Kidneys 0.74 0.80 0.76 0.83 0.84
Bladder 0.72 0.75 0.73 0.77 0.81
Lesions 0.52 0.58 0.54 0.60 0.65
Mean 0.70 0.74 0.72 0.75 0.80

Table 3  The averaged recall metric results per-patient in five distinct experiments across all targets on the test set
Recall

Approach
Target

nnU-Net – PET nnU-Net -PET/CT Proposed method -
PET

Proposed method - PET/CT 
(without SSL pre-training)

Proposed 
method - PET/CT
(SSL pre-train-
ing + fine-tuning)

Lacrimal glands 0.89 0.92 0.92 0.91 0.93
Parotid glands 0.90 0.94 0.95 0.94 0.95
Tubarial glands 0.81 0.85 0.84 0.84 0.81
Sublingual glands 0.78 0.81 0.83 0.90 0.89
Submandibular glands 0.86 0.90 0.92 0.94 0.94
Spleen 0.82 0.89 0.83 0.91 0.96
Liver 0.89 0.95 0.89 0.96 0.99
Bowel 0.81 0.86 0.84 0.86 0.86
Kidneys 0.85 0.90 0.86 0.92 0.94
Bladder 0.82 0.91 0.86 0.93 0.94
Lesions 0.63 0.68 0.70 0.78 0.78
Mean 0.82 0.88 0.86 0.90 0.89
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method exhibited superior results across all metrics 
when compared to nnU-Net, in the context of both PET-
only and PET/CT results. Consequently, the dual input 
configuration was kept in the last experiment. Moreover, 
pre-training and fine-tuning with PET/CT inputs yielded 
improved results compared to training the model with-
out self-supervised pre-training. The recorded DSC val-
ues as our primary metric ranged from 0.68 for lesions 
to 0.95 for the liver, highlighting the model’s efficacy. In 
summary, the mean DSC values for the five experiments 
were 0.75, 0.79, 0.77, 0.81, and 0.84, respectively, demon-
strating a consistent and noteworthy improvement across 
all targets.

In Tables  2 and 3, precision and recall exhibited an 
increase from the first to the second experiment, indicat-
ing the superior performance of PET/CT nnU-Net over 
PET-only nnU-Net. Moreover, the comparison between 
the first and third-column experiments in both tables 
highlights the enhanced performance of our proposed 
network. This distinction becomes more apparent when 
comparing the results of the second experiment with 
those of the fourth across all targets.

Comparing the last two columns in Table  2 for the 
precision metric indicates that results obtained through 
self-supervised pre-training outperform those obtained 
from training PET/CT segmentation from scratch with 
random weight initialization. However, Table  3 dem-
onstrates that the dual input PET/CT without a self-
supervised pre-training experiment achieved the highest 
recall rates. A significant agreement was found between 

manual and automated segmentation based on the qual-
ity metrics. This agreement was particularly evident in 
large organs with high tracer uptake, such as the liver, 
kidneys, parotid glands, and spleen. The most notice-
able differences between manual and network segmenta-
tion were observed in the tubarial, sublingual, and lesion 
regions.

According to Fig. 3, the DSCs were calculated for every 
50 epochs in the validation mode. The figure shows the 
PET-only nnU-Net experiment in pink, PET/CT nnU-
Net in purple, and the three experiments involving the 
proposed network: PET-only in orange, PET/CT trained 
without self-supervised pre-training in blue, and PET/
CT with self-supervised pre-training and fine-tuning 
in green. Figure  3 illustrates that the last experiment 
starts with a higher DSC in the initial epochs, surpassing 
80% around epoch 100. Additionally, the stability of the 
experiment is also higher than that of the other experi-
ments, and it lacks the oscillations observed in the other 
experiments.

A less frequent error was observed in the automatic 
segmentation of urine in the ureter region with high SUV 
values, where the network was occasionally misclassi-
fied. The network incorrectly classified a cluster of voxels 
associated with urine near the bladder as a tubarial gland, 
as shown in Fig. 4A by an arrow. There was another dis-
crepancy between automatic and manual segmentation 
for renal failure patients. The network failed to detect the 
bladder because of minimal urinary activity. For instance, 
as shown in Fig.  4B, the network did not segment the 

Fig. 3  Comparing five experiments using the mean DSCs for each 50 epoch in the validation mode
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bladder where the renal failure results in a SUV < 3. One 
noteworthy observation was bladder segmentation, even 
with a SUV < 3 in patients with healthy renal function. 
This is evidenced by the case illustrated in Fig. 4C, where 
the bladder was accurately segmented. Despite this, the 
network failed to include the lower-activity regions in 
the bowel of the same patient in Fig. 4C, as shown by the 
arrows. The challenge is because of the complex nature of 
bowel structures and varying uptake intensity.

In Fig.  5A, the network successfully delineates wide-
spread axial and appendicular bone metastases. 
Moreover, Fig.  5B presents an accurate automated seg-
mentation of regional lymph node metastases, as indi-
cated by arrows. In Fig.  5C, the network successfully 
identifies the invasion of the tumor into the bladder wall, 
along with regional and distant metastases. As seen in 
the same figure, alongside lymph node lesions and a pros-
tate tumor, the bladder is well segmented by the network. 

These examples underscore the network’s effectiveness in 
handling complex lesion patterns.

The main difference between manual delineation and 
automatic lesion segmentation, as seen in Fig.  6A, is 
the network’s inclusion of high-activity voxels that were 
unintentionally missed during manual segmentation 
(blue arrow). On the other hand, the automatic process 
sometimes overlooked less-active lesion voxels (with 
SUV < 3) that were manually identified (green arrow). 
Moreover, the network considers lung inflammation a 
lesion, even though it has not been manually segmented, 
as shown in Fig. 6B. Furthermore, there were cases where 
the injection site in hand led to high-activity voxels, and 
the network incorrectly labeled them as lesions, as illus-
trated in Fig. 6C.

Fig. 5  Coronal views illustrate the network’s proficiency in segmenting various lesions. (A) widespread axial and appendicular bone metastases. (B) 
Regional lymph node metastases. (C) Regional tumoral extension (tumor invasion to the bladder wall) and simultaneous regional and distant metastases

 

Fig. 4  Coronal views illustrate mismatches in manual segmentation vs. automated OAR segmentation. (A) High-activity urine in the urethra was misla-
beled as a tubarial gland. (B) Network failure in bladder segmentation due to lower activity caused by renal failure. (C) Network failed to segment bowel 
in low activity regions
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Discussion
Manually segmentation of metastatic lesions in whole-
body PSMA PET/CT images of mCRPC patients with 
multiple or disseminated metastases is impractical due 
to the extensive time and expertise required for each 
case. The variability in the lesions’ shapes, sizes, and 
radiotracer uptake levels further complicates this task. 
However, recent advancements in deep neural net-
works present a promising opportunity to automate this 
segmentation process, given adequate data for model 
training [38]. Additionally, several semi-automated seg-
mentation methods (e.g., aPROMISE, qPSMA, MIM, 
etc.) have been proposed for quantification, but have not 
been widely adopted [39–42]. For instance, the qPSMA 
tool utilizes a liver uptake-based threshold for lesion 
selection in advanced prostate cancer patients. However, 
as many lesions have SUVmax values below the thresh-
old of mean liver uptake, such methodologies struggle 
to detect PSMA avid disease. Rigid threshold-based seg-
mentation, such as 50% or 30% of lesion SUVmax, may 
inaccurately over-segment lesions, especially those with 
subtle or low uptake [39, 40]. The aPROMISE tool, which 
was FDA-cleared and CE-marked in 2021, employed a 
U-net architecture and provided quantitative analysis 
and standardized reporting for PSMA PET/CT scans; 
however, it exhibited a relatively high number of false-
positive lesions per-patient. The article did not specify if 
manual corrections were necessary, and aPROMISE lacks 
independent validation [40, 41]. MIM software is widely 
used for 3D PET image analysis in various medical appli-
cations, such as oncological diagnostics, therapy, neu-
rology, and radionuclide dosimetry [42–44]. However, 
its complexity and potential cost could pose challenges, 
especially for users seeking a more user-friendly interface 
or for institutions with budget constraints. Therefore, it 

is critical to address these issues before AI can be consid-
ered clinically valuable.

There is a substantial uptake in the lesions in different 
anatomical regions, frequently close to healthy organs. 
Tumors and metastasis can occur with unpredictability 
and heterogeneity, whereas the spatial information of 
OARs with physiological uptakes remains stable. Given 
this stability, segmentation of OARs on PET/CT images 
can be a preliminary step toward automating tumor seg-
mentation. For routine implementation of quantitative 
PET image analysis, RPT planning, and radiomic analy-
sis, a comprehensive PET/CT model capable of segment-
ing both OARs and lesions is essential [45]. Despite the 
significant potential of AI to segment PET and PET/CT 
images in oncology automatically, supervised techniques 
face significant challenges because of the need for more 
consensus on manual delineations and inter- and intra-
observer variabilities [24]. Transformer-based models 
learn more accurate feature representations than CNN-
based counterparts during pre-training and perform bet-
ter on downstream tasks that require fine-tuning. Several 
approaches, such as semi-supervised, neuro-symbolic 
AI, federated learning, and self-training frameworks, are 
actively being explored to deal with limited (annotated) 
data [24].

We proposed utilizing the Swin UNETR model with 
transfer learning to automate the segmentation of whole-
body [68Ga]Ga-PSMA-11 PET/CT images of lesion-
positive patients, including mCRPC [36]. To this aim, 
we undertook extensive experiments, including varia-
tions in sub-volume size, patch size, and window size, to 
determine the best configuration that yielded superior 
results. In five distinct experiments, the effectiveness of 
the network was compared for PET-only nnU-Net, PET/
CT nnU-Net, PET-only proposed method, PET/CT 
inputs (without self-supervised pre-training), and PET/

Fig. 6  Coronal views illustrate mismatches between manual segmentation and automated lesion segmentation by the network. (A) The network consid-
ered additional (blue arrows) or fewer (green arrow) lesion voxels. (B) The network misclassified liver inflammation as a lesion. (C) The network mistakenly 
categorized the injection site as a lesion
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CT inputs with both self-supervised pre-training and 
fine-tuning. For testing the robustness of the DL meth-
ods to slight differences in the protocol, PSMA PET/CT 
data from the two centers were included. Centers A and 
B provided 408 (318 for self-supervised pre-training and 
90 for fine-tuning) and 344 (334 for self-supervised pre-
training and 10 for fine-tuning) databases of PSMA PET/
CT images, respectively.

Ten OARs and lesions were manually segmented 
from [68Ga]Ga-PSMA-11 PET/CT images of 100 lesion-
positive patients, including mCRPC. Additionally, 652 
images, comprising both lesion-positive and lesion-nega-
tive cases, were left without segmentation for use in self-
supervised pre-training of the model. The test dataset 
consisted of 20 subjects (10 from each center) for super-
vised training. A 5-fold cross-validation was conducted 
using the remaining data, where each fold consists of 
64 subjects for training and 16 for testing. The data was 
augmented by introducing random rotations, random 
flipping, and cropping the foreground to enhance the 
segmentation quality.

With the recent FDA approval of [68Ga]Ga-PSMA-11 
and other rapid advances in PSMA imaging, our seg-
mentation model holds promise for improving the treat-
ment of mCRPC patients by making image information 
more accessible [46, 47]. In this regard, we can calculate 
precisely the amount of radiation delivered to healthy 
organs during [177Lu]Lu-PSMA RLTs as the therapeu-
tic pair of [68Ga]Ga-PSMA-11. According to Tables  1, 
2, and 3, in PET-only experiments, the proposed net-
work outperforms the well-known and widely applied 
nnU-Net in the segmentation tasks. The segmentation 
accuracy notably increases when trained with PET/
CT compared to PET-only, regardless of whether using 
nnU-Net or our proposed network. The impact of pre-
training on the convergence of network training is illus-
trated in Fig.  3, depicting validation losses across every 
50 epochs. According to the plots, our proposed network 
has superior DSC compared to the widely-used nnU-Net 
method for medical image segmentation tasks, whether 
utilizing PET-only or PET/CT images. This indicates 
the effectiveness of the Swin Transformer when used 
as the encoder to capture local and global information 
in image segmentation task. The figure highlights that 
without pre-training, validation loss tends to be unsta-
ble. The incorporation of self-supervised pre-training 
not only enhances the rate of loss minimization but also 
conveys stability and monotonicity behavior in the vali-
dation loss. Furthermore, self-supervised pre-training 
and fine-tuning yielded a super-additive improvement in 
accuracy in terms of DSC and precision. Self-supervised 
pre-training significantly improved training convergence 
time and segmentation quality by potentially encoding 
anatomical and functional features priors in the network, 

such as organ shapes and spatial relationships. As shown 
in Table  1, considering the last experiment, the average 
lowest and highest DSC values per-patient were 0.68 for 
the lesions and 0.95 for the liver. The mean DSC among 
OARs without considering lesions averaged about 0.86, 
and with considering lesions, it was approximately 0.84.

Notably, there were no observed improvements in 
recall when applying self-supervised pre-training, partic-
ularly in small targets, such as lesions and small glands. 
It is worth emphasizing that DSC is the most commonly 
used metric for validating medical volume segmenta-
tions and has become a golden standard for assessing 
the segmentation quality from a voxel-based perspective 
[48]. However, recall and precision are not as commonly 
considered as the primary metrics in the medical image 
segmentation evaluation due to their sensitivity to seg-
ment size, penalizing errors in small segments more than 
in large ones [48]. Therefore, evaluating the model solely 
based on precision or recall is not reasonable. Given the 
unique requirements of lesion segmentation tasks, alter-
native metrics, such as DSC may be more suitable to 
evaluate the efficacy of a novel method. In this regard, 
we considered DSC as the primary metric for evaluating 
the impact of pre-training through a direct comparison 
between automatic and ground truth segmentations.

Regarding comparing the results with other studies, we 
should note that FDG PET scans have been the focus of 
most AI segmentation techniques, while other radiotrac-
ers have rarely been considered [49–51]. Using a 2.5D 
U-Net architecture, Zhao et al. [22] segmented prostate 
lesions, lymph nodes, and bones with localized and sec-
ondary prostate tumors from [68Ga]Ga-PSMA-11 PET/
CT images. They achieved average DSCs of 64.5% for 
bone lesions and 54.4% for lymph node lesions on dual 
input PET/CT. Xue et al. [52] developed a U-Net-based 
framework in whole-body PET/CT images with the 
[18F]DCFPyL radiotracer to automatically segment met-
astatic prostate cancer lesions. The authors proposed to 
use weighted batch-wise dice loss and achieved an aver-
age median lesion-wise DSC of 0.51 and 0.60 for lesions 
with SUVmax>5.0. A review of AI techniques for tumor 
segmentation in PET and CT images was conducted by 
Yousefrizi et al. [24], emphasizing the need for clinical 
integration of these techniques.

In terms of OAR segmentation, Leube et al. [35] 
applied five different u-net-based approaches to automat-
ically segment kidneys in 53 [68Ga]Ga-PSMA-I&T and 55 
[18F]PSMA-1007 PET/CT examinations. It is not appro-
priate to compare the results, since the differences in 
tracers make it impossible to compare their DCS of 0.93 
for kidneys with ours of 0.89. A noteworthy observation 
was found regarding the kidneys, as shown in Fig.  4B. 
The network failed to segment the bladder of a patient 
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with renal failure. In contrast, the kidneys segmented sig-
nificantly with a DSC of 0.92.

Using deep neural networks, Toosi et al. [53] auto-
mated the segmentation of salivary and lacrimal glands 
from [18F]DCFPyL PET/CT images and achieved a 
mean DSC of 0.87. Salivary and lacrimal glands are 
dose-limiting OARs in PSMA-RLT. Radiopharmaceuti-
cal uptake in these OARs could estimate radiation dose 
pre-treatment, help select an optimal dose, and prevent 
severe side effects. In our work, the tubarial and parotid 
glands had the lowest and highest DSC, respectively, 
and the mean DSC among all the glands was 0.83. Using 
multi-target CNNs, Klyuzhin et al. [54] automatically 
segmented all OARs on [18F]DCFPyL PET/CT images. 
Their model achieved the lowest and highest mean DSCs 
for the parotid glands and the bladder at 0.86 and 0.90, 
respectively. The authors found that a multi-organ net-
work is more effective than a single-organ network if they 
have similar architectures, so in the present work, only 
the multi-target network was considered. In contrast to 
other studies, such as those mentioned above, our study 
focuses on both lesion and OAR segmentation.

The results indicated that automatic segmentation can 
be more accurate than manual segmentation by a nuclear 
medicine physician, especially for bowel and lesion seg-
mentation. Therefore, the network could handle some 
inconsistencies in training and testing. Given the high 
anatomical variability and diverse uptake patterns of the 
bowel, its DSC was relatively low, around 0.8. Accord-
ing to Fig. 4C, the network struggles with segmenting the 
region of the intestinal tract with low activity.

The network precisely segmented lesions that are not 
uniformly distributed across patients; some patients may 
have an abundance of lesions in bone and lymph nodes 
(see Fig. 5A), while others may suffer only from isolated 
lesions (see Fig. 5B and C). An interesting finding in our 
study was strong model performance on lesions close 
to the bladder, such as the cases depicted in Fig. 5. The 
network accurately segmented different lesions, such 
as bone and lymph node metastases, as well as prostate 
tumors.

Poor performance is likely because of high image 
noise levels and patient PSMA expression variations. In 
another notable error in lesion segmentation, the phy-
sician included more voxels around a detected lesion 
(Fig.  6A, green arrow). Sometimes, the physician left 
some lesion voxels with high uptake around the lesion 
site (Fig. 6A, blue arrow). As shown in Fig. 6B, one false 
positive error by the network is detecting the uptake of 
lung inflammation because of enthesopathy as a lesion. 
If there is a slight overlapping by the bone around this 
region, it can increase this error. In our study group, one 
differentiated liver met was found, which was insufficient 
for our network training and, therefore, was one source of 

error in network lesion detection. Another minor source 
of error in both manual segmentation and network seg-
mentation is focal urinary stasis in the ureter. However, 
our network performance was acceptable in this region; 
these parts need more attention during manual segmen-
tation. As shown in Fig. 4A, the network labeled the focal 
urinary as a tubarial gland. In some other cases, it labeled 
the same region as lesions. Also, active urine in the ure-
thra or urinary contamination on the skin was another 
source of errors. The guidelines suggest reducing urinary 
bladder activity to enhance the accuracy of diagnosing 
adjacent lesions [46]. Automated lesion detection can be 
further improved by adopting a revised protocol during 
data collection.

Conglomerated lymph nodes in the retroperitoneal 
region with extension to the intraperitoneal cavity mimic 
radiotracer uptake in the bowel. Considering the rarity of 
this case, the network was not fully trained to find these 
regions, ultimately leading to another source of error. The 
last point in lesion detection is that the focal radiotracer 
uptake at the injection site is a source of false positive 
error (see Fig. 6C). To overcome this error, the injection 
site should be segmented separately in future studies.

The proposed approach might simplify diagnostics and 
therapeutics studies by automatically segmenting radio-
pharmaceutical accumulation in OARs and lesions. Dual-
input PET/CT images were incorporated to enhance the 
detection and classification of OARs and lesions. Accord-
ing to the manual interpretation of the fusion images, 
PSMA PET/CT significantly improved the detection and 
characterization of tumor lesions and OARs [55].

Our contribution lies in introducing a novel approach 
that has not previously been applied to PSMA-PET/CT 
imaging. We believe that our method has the potential to 
affect clinical practice due to its state-of-the-art architec-
ture. This study may provide insights into future research 
directions and improvements in detecting whole-body 
tumor burdens, potentially paving the way for fur-
ther research and refinement. With a self-supervised 
pre-training and supervised fine-tuning approach, our 
method achieves a remarkable 5% improvement in DSC, 
surpassing that of the nnU-Net with PET/CT input. 
Moreover, as a result of the collaboration between the 
two centers in this study, the algorithm has the potential 
to be applied to other centers, thereby likely accelerating 
its clinical translation. A key contribution of our study 
is the utilization of self-supervised learning for PSMA-
PET/CT imaging. With pre-training on unlabeled data 
(652 samples), we demonstrated a 3% improvement in 
accuracy and reduced training time for significant per-
formance. Moreover, our method is scalable, as incor-
porating additional unlabeled data for pretraining could 
further enhance the results. This scalability is particularly 
feasible in clinical settings where regular PET/CT images 
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are acquired, alleviating the need for clinicians to manu-
ally annotate pre-training images. To facilitate further 
evaluation, we have shared the source code of our net-
work on GitHub. This allows the model to be tested on 
other datasets by researchers and clinicians, promoting 
generalization and collaboration.

Limitations and future perspectives
The proposed network demonstrated moderate perfor-
mance in delineating lesions of different sizes and uptake 
patterns; however, further improvement is required 
before it can be applied in clinical practice. Various 
factors may contribute to the DSC of 0.68 for lesions, 
including the limited size of training sets and significant 
variability in lesion size, shape, proximity to organs, and 
intensity of uptake. While it is possible to further catego-
rize the tumor burden into different categories such as 
local, bone, and lymph node, it is essential to note that 
most lymph node metastases commonly occur in the 
pelvic region, which is known as an indicator of progno-
sis [56, 57]. Future research can focus on differentiating 
lymph node metastases in the pelvic and extrapelvic sites 
(such as paraaortic, mediastinal, and interaortocaval), as 
well as investigating the involvement of bone metastases.

In this study, we evaluated the segmentation efficiency 
of the Swin UNETR considering per-patient measure-
ments; however, per-lesion measurements could provide 
further insights. Moreover, we found that the pre-trained 
model used in our segmentation task performed well in 
lesion-positive subjects; however, it requires generaliza-
tion. Potential solutions include utilizing multi-modal 
data that includes metadata (such as disease history) or 
patient medical reports, implementing effective signal-
noise discrimination through noise modeling, or training 
on a larger labeled dataset with greater diversity in dis-
ease staging, including healthy cases. Annotating the data 
for an extensive database is still challenging due to logis-
tical difficulties, necessitating the substitution of manual 
labeling. Enhancing annotation efficiency and reliability 
can be achieved through an iterative process that com-
bines automatic annotation with manual editing.

Although interobserver differences in delineation are 
known, we used the manual delineation as a reference 
standard [58]. In addition, human-generated delineations 
of organs usually include some level of inconsistency. 
It was observed that automatic segmentations were at 
times more accurate than physician-generated segments, 
particularly in the bowel and lesions. The network gen-
erated more consistent segmentations on the test set 
than a physician, as it could address some inconsisten-
cies in the training phase. Phantom studies, or studies 
with consensus segmentations, could help in objectively 
measuring segmentation performance. It is important to 
note that the visible lesion boundary may differ from the 

pathological abnormality location due to partial volume 
effects [22]. An alternative solution involves training on a 
vast dataset annotated by diverse experts in the field [59].

While post-processing enhancement techniques can 
significantly improve segmentations and serve as crucial 
tools to address inherent algorithm limitations, we inten-
tionally avoided implementing post-processing methods 
in this study. The primary objective of this study was to 
examine Swin UNETR’s performance on its own.

DL models have the capability to distinguish between 
low-level scanner features and high-level patient features, 
making them more robust and flexible in accommodat-
ing cross-domain differences arising from different scan-
ners or protocols. Through collaboration with domain 
experts, domain-guided proxy tasks can be proposed 
to facilitate the learning of better data representation 
for downstream tasks, such as segmentation of PET/
CT images. Moreover, a similar model can be developed 
for theranostics PSMA SPECT/CT images, focusing on 
optimizing the model for lower-resolution SPECT/CT 
images. The automated detection and segmentation of 
lesions are crucial for enhancing treatment planning and 
monitoring responses in radionuclide therapy. The pres-
ent findings provide an extensive baseline and suggest 
promising directions for developing automated quantifi-
cation metrics that are clinically acceptable for enhancing 
prostate cancer patient outcomes.

Conclusion
In a nutshell, segmentation plays a crucial role in PSMA 
imaging clinical tasks, radiotherapy planning, radiomics 
and dosiomics analyses, and routine dosimetry or dose 
prediction. This study investigated and tested a neural 
network for the automated segmentation of 10 OARs and 
lesions in [68Ga]Ga-PSMA-11 PET/CT images. We uti-
lized self-supervised pre-training with the Swin UNETR 
transformer encoder for fine-tuning to address the lack 
of annotated data. The highest performance was achieved 
using PET/CT inputs with self-supervised pre-training 
and fine-tuning in multi-target segmentation. Lesions 
and the liver have the lowest and highest DSCs of 0.68 
and 0.95, respectively. A substantial amount of train-
ing data improves DL methods relevant to whole-body 
examinations. AI-based segmentation methods for onco-
logical PET images promise to provide personalized can-
cer treatment.
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