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Abstract 

Background Esophagectomy is the main treatment for esophageal squamous cell carcinoma (ESCC), and patients 
with histopathologically negative margins still have a relatively higher recurrence rate. Contrast‑enhanced CT 
(CECT) radiomics might noninvasively obtain potential information about the internal heterogeneity of ESCC 
and its adjacent tissues. This study aimed to develop CECT radiomics models to preoperatively identify the differ‑
ences between tumor and proximal tumor‑adjacent and tumor‑distant tissues in ESCC to potentially reduce tumor 
recurrence.

Methods A total of 529 consecutive patients with ESCC from Centers A (n = 447) and B (n = 82) undergoing preop‑
erative CECT were retrospectively enrolled in this study. Radiomics features of the tumor, proximal tumor‑adjacent 
(PTA) and proximal tumor‑distant (PTD) tissues were individually extracted by delineating the corresponding region 
of interest (ROI) on CECT and applying the 3D‑Slicer radiomics module. Patients with pairwise tissues (ESCC vs. PTA, 
ESCC vs. PTD, and PTA vs. PTD) from Center A were randomly assigned to the training cohort (TC, n = 313) and internal 
validation cohort (IVC, n = 134). Univariate analysis and the least absolute shrinkage and selection operator were used 
to select the core radiomics features, and logistic regression was performed to develop radiomics models to differen‑
tiate individual pairwise tissues in TC, validated in IVC and the external validation cohort (EVC) from Center B. Diagnos‑
tic performance was assessed using area under the receiver operating characteristics curve (AUC) and accuracy.

Results With the chosen 20, 19 and 5 core radiomics features in TC, 3 individual radiomics models were developed, 
which exhibited excellent ability to differentiate the tumor from PTA tissue (AUC: 0.965; accuracy: 0.965), the tumor 
from PTD tissue (AUC: 0.991; accuracy: 0.958), and PTA from PTD tissue (AUC: 0.870; accuracy: 0.848), respectively. In 
IVC and EVC, the models also showed good performance in differentiating the tumor from PTA tissue (AUCs: 0.956 
and 0.962; accuracy: 0.956 and 0.937), the tumor from PTD tissue (AUCs: 0.990 and 0.974; accuracy: 0.952 and 0.970), 
and PTA from PTD tissue (AUCs: 0.806 and 0.786; accuracy: 0.760 and 0.786), respectively.
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Conclusion CECT radiomics models could differentiate the tumor from PTA tissue, the tumor from PTD tissue, 
and PTA from PTD tissue in ESCC.

Keywords Esophagus, Squamous cell carcinoma, Tomography, X‑ray computed, Tumor‑adjacent tissue, Tumor‑
distant tissue

Background
Esophageal cancer is one of the most common malignant 
tumors threatening human health, and its mortality and 
morbidity rank 6th and 7th in the world, respectively [1]. 
Esophageal squamous cell carcinoma (ESCC) and ade-
nocarcinoma are the main histological types, and ESCC 
accounts for approximately 90% of esophageal cancer 
cases worldwide [2, 3]. The overall 5-year survival rate of 
ESCC ranges from 15%—25% [4]. Currently, esophagec-
tomy remains the mainstay treatment for ESCC [5], but 
in some patients with histopathologically negative mar-
gins, there is still a relatively higher recurrence rate. Pre-
vious studies revealed that field cancerization (FC) is a 
crucial factor in tumor recurrence [6, 7]. The notion of 
FC is that molecular changes in histologically normal 
adjacent tissues are similar to the tumor itself, which 
could lead to new invasive carcinomas in the resection 
margins or in “macroscopically normal” tissues adjacent 
to the tumor [7–10]. In addition, some previous studies 
reported FC approximately 1  cm away from the tumor 
margins (tumor-adjacent tissues) and near the ideal 
resection margins (tumor-distant tissues) in esophageal 
cancer patients, and found differences in gene expres-
sion and molecular mechanisms between tumor-adjacent 
and tumor-distant tissues [11, 12]. If the tissue showing 

precancerous lesions is not completely removed by sur-
gery, it may cause local recurrence or develop into a 
second primary tumor [13]. In addition, transthoracic 
esophagotomy plus proximal partial gastrectomy were 
the main surgical methods for ESCC, and esophagogas-
tric anastomosis was used to restore the continuity of the 
digestive tract. Therefore, it is of vital importance to pre-
operatively identify differences between the tumor, proxi-
mal tumor-adjacent (PTA) and proximal tumor-distant 
(PTD) tissues to formulate optimal surgical strategies to 
reduce tumor recurrence.

Contrast-enhanced computed tomography (CECT) is 
the preferred imaging method for the preoperative diag-
nosis of ESCC and treatment decision making. However, 
CT is mainly used to evaluate the external morphological 
characteristics of tumors, rather than assessing intratu-
mor heterogeneity. Radiomics can quantitatively analyze 
a large number of features extracted from traditional 
medical images, such as CT, and noninvasively provide 
potential information about the biological characteristics 
and internal heterogeneity of tumors [14, 15]. In recent 
years, radiomics has been widely used to noninvasively 
evaluate the preoperative staging, chemoradiotherapy 
response and postoperative recurrence of ESCC [16–18]. 
To the best of our knowledge, no study has assessed the 

Fig. 1 Flowchart for selecting the study population. Notes: CECT, contrast‑enhanced computed tomography; ESCC, esophageal squamous cell 
carcinoma
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differences between the tumor, PTA and PTD tissues of 
ESCC using CECT radiomics. Therefore, the purpose of 
this study was to develop and validate radiomics models 
based on CECT to preoperatively differentiate between 
the tumor, PTA and PTD tissues of ESCC.

Methods
Patients
The institutional ethics committee of our institution 
approved this retrospective study, and written informed 
consent was waived.

From July 2020 to June 2022, we collected CT data 
and medical records of 553 consecutive patients with 
ESCC from Centers A and B. Patients were recruited into 
this study based on the following inclusion criteria: (a) 
patients underwent preoperative thoracic CECT scans 
within 2  weeks before surgery, and did not receive pre-
operative neoadjuvant chemotherapy and/or radiother-
apy before undergoing CT examination; (b) ESCC was 
confirmed by preoperative endoscopy and pathological 
biopsy, and the surgical margin was postoperatively con-
firmed to be negative; (c) the patients had no history of 
other organ malignancies; and (d) the upper margin of 
the tumor was at least 5 cm away from the cricopharyn-
geal muscle. The exclusion criteria were as follows: (a) the 
clinicopathological information was incomplete (n = 4); 
(b) the quality of CT images was unsatisfactory (n = 6); 
(c) the patients had surgical contraindications (n = 6); 
or (d) the primary tumor of ESCC could not be identi-
fied on CECT (n = 8). Finally, 24 of 553 patients were 
excluded, and a total of 529 patients were involved in our 
study. Among the 529 patients, 447 patients from Center 
A were randomly assigned to the training cohort (TC, 
n = 313) and the internal validation cohort (IVC, n = 134) 
at a 7:3 ratio based on the published report [19], and 82 
patients from Center B were assigned to the external vali-
dation cohort (EVC). The patient flowchart is displayed 
in Fig. 1.

All enrolled patients with ESCC received radical 
esophagectomy and regional lymph node dissection. 
The surgical margins in all resected specimens were not 
affected by the tumor (R0). Baseline clinical data of all 
patients, including age, sex, anatomical site of the pri-
mary tumor, differentiation degree, cT stage and cN 
stage, were obtained from the medical records (Table 1). 
Additionally, the differentiation degree, cT stage and 
cN stage were determined based on postoperative his-
topathological biopsy and the eighth edition American 
Joint Committee on Cancer guidelines [20]. In addition, 
patients with advanced ESCC determined by postopera-
tive pathology received adjuvant treatments such as radi-
otherapy or chemotherapy.

Follow‑up
We followed up all enrolled patients every 3 to 6 months 
for one year or more after surgery through barium swal-
low, thoracoabdominal CT imaging or endoscopic biopsy, 
focusing on suspicious recurrence or the corresponding 
clinical symptoms related to postoperative recurrence, 
such as dysphagia. In addition, patients with confirmed 
recurrence after surgery underwent adjuvant treatments 
(such as radiotherapy or chemotherapy) to prolong their 
survival period. In each participant, the termination 
event of the follow-up was postoperative death during 
the follow-up period after surgery. The related survival 
data of all patients are also presented in Table 1.

Image acquisition
All patients enrolled in our study underwent thoracic 
CECT scans with two 64 multidetector scanners (Light-
Speed VCT, GE Medical systems, USA; and SOMATOM 

Table 1 The clinical characteristics of patients from the Centers 
A and B

SD standard deviation

Parameters Center A (n = 447) Center B (n = 82)

Median age (years; range) 67 (42–85) 66 (63–84)

Gender (male: female) 332:115 58:24

Anatomic distribution (%)

 Upper thoracic portion 49 (11.0) 12 (14.6)

 Middle thoracic portion 285 (63.7) 47 (57.3)

 Lower thoracic portion 113 (25.3) 23 (28.1)

Differentiation (%)

 Well 169 (37.8) 30 (36.6)

 Moderate 227 (50.8) 43 (52.4)

 Poor 51 (11.4) 9 (11.0)

T stage (%)

  cT1 82 (18.4) 14 (17.1)

  cT2 123 (27.5) 25 (30.5)

  cT3 207 (46.3) 36 (43.9)

  cT4a 35 (7.8) 7 (8.5)

N stage (%)

  cN0 263 (58.9) 41 (50.0)

  cN1 128 (28.6) 24 (29.3)

  cN2 56 (12.5) 17 (20.7)

Survival data

 Postoperative therapy (%)

  Yes 108 (24.2) 20 (24.4)

  No 339 (75.8) 62 (75.6)

 Disease‑free survival 
     within one year, months  
     (mean ± SD)

11.22 ± 2.39 10.32 ± 3.67

 Recurrence or death (%)

  Yes 100 (22.4) 22 (26.8)

  No 347 (77.6) 60 (73.2)
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Definition AS + , Siemens Healthineers, Erlangen, Ger-
many). Before CT data acquisition, 100 to 200  mL of 
water was needed to be drunk as oral esophageal nega-
tive contrast material. CT examinations were executed 
during one breath hold at full suspended inspiration 
for 10–15 s in the supine position. After a conventional 
unenhanced CT scan, CECT data acquisition was started 
25 to 30  s after the initiation of 1.5  mL/kg nonionic 
iodine contrast agent (containing 300 mL/kg iodine) at a 
rate of 3.0  mL/s for a total of 70 to 100  mL via a 20-G 
needle inserted into an antecubital vein with a high-pres-
sure injector and flushed with 20 mL saline. The parame-
ters of the two CT scanners were as follows: tube voltage 
of 120 kV, tube current of 200 mA, detector collimation 
of 64 × 0.6  mm, reconstruction slice thickness of 1  mm, 
matrix of 512 × 512  mm for each scanner, rotation time 
of 0.5 s and 0.3 s, and pitch of 0.9 and 0.8 for the corre-
sponding scanner. The anatomic coverage of the CT scan 
was from the chest  entrance to the middle level of the 
left kidney. All the CECT data used for radiomics feature 
extraction were retrieved from the picture archiving and 
communication system.

Image segmentation and radiomics feature extraction
To accurately extract the radiomics features of ESCC, 
PTA and PTD tissues, the definitions of the previous 
three tissues on CECT imaging were as follows. For 
ESCC, the esophageal wall thickness exceeding 5  mm 
was considered abnormal due to the primary tumor on 
axial imaging [21]. Clinically, the ideal proximal resec-
tion margin for ESCC is ≥ 5 cm [11, 22], so this study only 
investigated the characteristics of the proximal resection 
margin of ESCC. At a distance of 1  cm away from the 
tumor proximal margin, the molecular variation related 
to cancer is obvious, and this variation can also extend to 
the resection margin [11]. Therefore, we defined PTA and 
PTD as the tissues approximately 1  cm and 5  cm away 
from the proximal margin of the tumor, respectively.

Fig. 2 In a 64‑year‑old male patient with esophageal squamous cell 
carcinoma (ESCC), the region of interest (ROI) was delineated slice 
by slice on axial contrast‑enhanced computed tomography (CECT) 
images (A). The white arrow refers to the primary tumor of ESCC; 
the blue, red and green solid lines represent the position lines 
of the proximal tumor‑distant (PTD) tissue, proximal tumor‑adjacent 
(PTA) tissue and the proximal margin of ESCC on the reconstructed 
sagittal CECT image, respectively; and the yellow arrow 
along the longitudinal axis of the esophagus indicates the ruler 
measuring line for defining the boundary lines of the PTD and PTA 
tissues (B). The ROI covering more than half of the esophageal wall 
for PTA tissue is manually drawn on an axial magnified CECT image 
(C). The ROI delineation of PTD tissue is performed similarly to that of 
PTA tissue
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The thoracic CECT images of ESCC with 1 mm thick-
ness were imported into 3D-Slicer (https:// www. slicer. org), 
a free and open-source software, which was used for delin-
eating regions of interest (ROIs) of the tumor (Fig.  2A), 
PTA and PTD tissues, and extracting radiomics features 
of the corresponding tissues. The locations of the PTA 
and PTD tissues were shown on the reconstructed sag-
ittal CECT (Fig.  2B), and the axial ROIs of the PTA and 
PTD tissues were obtained at the corresponding distance 
(Fig.  2C). Two radiologists (readers 1 and 2, with 4 and 
25 years of experience in digestive radiology, respectively) 
who were blinded to the patients’ pathological outcomes 
separately delineated ROIs of ESCC slice by slice and the 

ROIs of the PTA and PTD tissues (the area of each ROI 
more than half of the esophageal wall) on the magnified 
axial CECT scans, avoiding fat, air, bone and blood ves-
sels. When two readers disagreed with each other, they 
achieved consensus after discussion and consultation. 
Finally, 1223 individual radiomics features of ESCC, PTA 
and PTD tissues were automatically extracted by apply-
ing the 3D-Slicer radiomics module, and radiomics fea-
tures included first-order, gray-level co-occurrence matrix 
(GLCM), gray-level dependence matrix (GLDM), gray-
level run-length matrix (GLRLM), gray-level size zone 
matrix (GLSZM), neighboring gray tone difference matrix 
(NGTDM), and shape.

Fig. 3 Feature stability evaluation with intra‑ and interobserver agreements based on the intraclass correlation coefficient (ICC). All features show 
good intraobserver agreement (A, B and C) and interobserver agreement (D, E and F) with ICCs > 0.75 (above the red cutoff line) in pairwise 
comparisons, including esophageal squamous cell carcinoma vs. proximal tumor‑adjacent (PTA) tissue, tumor vs. proximal tumor‑distant (PTD) 
tissue, and PTA vs. PTD tissue, respectively

https://www.slicer.org
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Intra‑ and interobserver agreements
To assess the repeatability of radiomics feature extraction, 
we randomly chose 60 consecutive samples from Center 
A to test the intra- and interobserver consistency by the 
previous 2 radiologists. The intraclass correlation coef-
ficient (ICC) was used to evaluate the intra- and inter-
observer agreements. An ICC score greater than 0.75 
indicated satisfactory agreement. To assess the intraob-
server reproducibility, reader 1 sketched the ROIs of the 
tumor, PTA and PTD tissues twice within one week fol-
lowing the same delineating steps based on a published 
report [19]. In addition, reader 2 independently delineated 
the ROIs of the tumor, PTA and PTD tissues to assess the 
interobserver agreement by comparing the extracted radi-
omics features from the first ROI depiction by reader 1.

Dimensionality reduction and radiomics feature selection
To avoid the curse of dimensionality and reduce the bias 
from radiomics features when modeling [19], we adopted 
the following three steps to select the significant features 
of the pairwise tissues (ESCC vs. PTA, ESCC vs. PTD, 
and PTA vs. PTD).

First, all the previous 1223 radiomics features under-
went z-score normalization [23]: xnorm =

x−µ

σ
 , where x is 

the original feature value, µ is the mean value of this fea-
ture, and σ is the standard deviation.

Second, all features were examined by Student’s t test or 
the Mann‒Whitney U test to select potentially significant 
features from TC. Radiomics features that did not satisfy 
either of the aforementioned tests (P > 0.05) were excluded.

Third, the least absolute shrinkage and selection opera-
tor (LASSO) was used to identify the core radiomics 
features in TC to determine the differences between the 
previous pairwise tissues by performing variable selec-
tion and regularization of high-dimensional data, thus 
enhancing the accuracy and interpretability of the core 
radiomics features [19, 24]. The 1-standard error of the 
minimum criteria (the 1-SE criteria, a simpler model) 
was applied to adjust the regularization parameter (λ) for 
feature selection using 10-fold cross-validation.

Construction and validation of the radiomics model
The optimal selected radiomics features from TC were used 
to build radiomics models based on logistic regression, a 
classical machine learning method. The radiomics models 
were used to evaluate the diagnostic performance of core 
radiomics features in TC for differentiating ESCC from 
PTA or PTD tissue and PTA from PTD tissue. The cor-
responding radiomics models of IVC and EVC were also 
obtained through the aforementioned logical regression 
method to validate the performance of the above radiom-
ics models from TC. The area under the receiver operating 
characteristic curve (AUC), accuracy, F-1 score, sensitivity, 

Table 2 The 20 features to differentiate tumor from proximal tumor‑adjacent tissue of esophageal squamous cell carcinoma

Glcm gray-level co-occurrence matrix, Glrlm gray-level run-length matrix, Ngtdm neighboring gray tone difference matrix, Gldm gray-level dependence matrix, Idmn 
inverse difference moment normalized, Idn inverse difference normalized, Imc1 informational measure of correlation 1, MCC maximal correlation coefficient

Image type Feature class Feature name

Original Shape Elongation

Original Shape Maximum2DDiameterRow

Original Shape Maximum2DDiameterSlice

Original Shape SurfaceVolumeRatio

Log‑sigma‑1‑0‑mm‑3D Firstorder Skewness

Log‑sigma‑1‑0‑mm‑3D Glcm ClusterShade

Log‑sigma‑1‑0‑mm‑3D Glcm Idmn

Log‑sigma‑1‑0‑mm‑3D Glcm Idn

Log‑sigma‑1‑5‑mm‑3D Glrlm ShortRunLowGrayLevelEmphasis

Log‑sigma‑1‑5‑mm‑3D Ngtdm Coarseness

Log‑sigma‑2‑0‑mm‑3D Firstorder 90Percentile

Wavelet‑LLH Glcm Correlation

Wavelet‑LLH Glam LargeDependenceHighGrayLevelEmphasis

Wavelet‑LLH Gldm SmallDependenceLowGrayLevelEmphasis

Wavelet‑HHL Glcm Imc1

Wavelet‑HHH Glcm MCC

Wavelet‑HHH Ngtdm Coarseness

Wavelet‑LLL Firstorder Median

Wavelet‑LLL Glcm Correlation

Wavelet‑LLL Ngtdm Coarseness
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specificity, positive predictive value (PPV), and negative 
predictive value (NPV) were calculated by the confusion 
matrix to evaluate the radiomics models based on the pre-
vious individual pairwise tissues of TC, IVC and EVC.

Statistical analysis
All statistical analyses of radiomics data were conducted 
using R statistical software (version 4.2.1, https:// www.r- 
proje ct. org/). The “psych” package was used to evaluate 
the intra- and interobserver agreements of all radiomics 
features extracted from the corresponding ROIs of pre-
vious pairwise tissues of ESCC. LASSO regression based 
on multivariate logistic regression was performed using 
the “glmnet” and “pROC” packages, and the “pROC” 
package was used to plot the receiver operating charac-
teristic (ROC) curves of TC, IVC and EVC. A P value less 
than 0.05 suggested a significant difference.

Radiomics quality score
The readers 1 and 2 assessed the methodologic quality of 
our radiomics study in consensus through the radiomics 
quality score (RQS) proposed by Lambin in 2017 [25]. The 
RQS comprises 6 domains with 16 components. Domain 
1, the assessment of the quality and replicability of image 
and segmentation; domain 2, the reporting of the feature 
reduction; domain 3, model performance and validation; 
domain 4, biological validation and potential clinical util-
ity; and domains 5 and 6, demonstration of high-level 
evidence and open science, respectively [26]. Most items 
are designated to 0, 1 or 2 points. In order to highlight 
the importance of some dimensions, a higher point is 
assigned. For example, a prospective validation study is 
assigned 7 points, and a study validated in three or more 
datasets is assigned 5 points, while a study without valida-
tion is assigned -5 points. The ideal score of the RQS is 36 
points, corresponding to a percentage of 100%.

Results
Intra‑ and interobserver agreements of feature extraction
For intra- and interobserver agreements of CECT radi-
omics feature extraction from the 60 random consecu-
tive samples, there were 1122, 1137 and 1126 extracted 
features of the pairwise tissues (tumor vs. PTA, tumor 

Table 3 The 19 features to differentiate tumor from proximal 
tumor‑distant tissue of esophageal squamous cell carcinoma

Glcm gray-level co-occurrence matrix, Glszm gray-level size zone matrix, Gldm 
gray-level dependence matrix, Glrlm gray-level run-length matrix, Ngtdm 
neighboring gray tone difference matrix, Idmn inverse difference moment 
normalized, MCC maximal correlation coefficient, Imc1 informational measure of 
correlation 1, Imc2 informational measure of correlation 2

Image type Feature class Feature name

Original Shape Flatness

Original Shape Sphericity

Original Shape SurfaceVolumeRatio

Original Firstorder Median

Log‑sigma‑0‑5‑mm‑3D Glcm Idmn

Log‑sigma‑0‑5‑mm‑3D Glszm GrayLevelNonUniformity

Log‑sigma‑1‑0‑mm‑3D Firstorder Kurtosis

Log‑sigma‑1‑0‑mm‑3D Glcm Idmn

Log‑sigma‑2‑0‑mm‑3D Gldm LargeDependenceEmphasis

Log‑sigma‑2‑0‑mm‑3D Glrlm GrayLevelNonUniformity

Wavelet‑LLH Glcm ClusterProminence

Wavelet‑LLH Glcm MCC

Wavelet‑LLH Glrlm ShortRunHighGrayLevelEm‑
phasis

Wavelet‑LHL Glcm Imc2

Wavelet‑HLL Glcm Imc1

Wavelet‑HLL Glcm Imc2

Wavelet‑HLL Ngtdm Strength

Wavelet‑HHH Glszm SmallAreaEmphasis

Wavelet‑LLL Glcm Correlation

Table 4 The 5 features to differentiate PTA from PTD of 
esophageal squamous cell carcinoma

PTA proximal tumor-adjacent tissue, PTD proximal tumor-distant tissue, Glcm 
gray-level co-occurrence matrix, Imc1 informational measure of correlation 1

Image type Feature class Feature name

Original Shape Elongation

Original Shape Maximum2DDiameterColumn

Original Shape Maximum2DDiameterRow

Log‑sigma‑0‑5‑mm‑3D Firstorder Median

Wavelet‑HLH Glcm Imc1

Fig. 4 Radiomics feature selection using least absolute shrinkage and selection operator (LASSO) regression in pairwise tissues. The area 
under the receiver operating characteristic curve (AUC) was plotted by tuning the optimal parameter (λ) selection via 10‑fold cross‑validation 
and minimum criteria in the LASSO model. The left and right dotted lines denote the minimum criteria and the 1‑standard error criterion 
(1‑SE) in the pairwise tissues, including esophageal squamous cell carcinoma vs. proximal tumor‑adjacent (PTA) tissue, the tumor vs. proximal 
tumor‑distant (PTD) tissue, and the PTA vs. PTD tissue (A, B and C, respectively). The LASSO coefficient profiles the 1013, 1050 and 823 radiomics 
features for the differentiation of previous pairwise tissues, and as a result, 20 19 and 5 nonzero coefficients have been produced (D, E and F, 
respectively)

(See figure on next page.)

https://www.r-project.org/
https://www.r-project.org/
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Fig. 4 (See legend on previous page.)
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vs. PTD, and PTA vs. PTD) with ICC values greater 
than 0.75, whereas there were 101, 86 and 97 unsatisfac-
tory features with ICC values less than or equal to 0.75, 
respectively (Fig.  3). After this assessment, the 1122, 
1137 and 1126 radiomics features with all intra- and 
interobserver ICC values of more than 0.75 were selected 
for further analyses. Reader 1 performed the segmenta-
tion and feature extraction of the remaining participants.

Dimensionality reduction and radiomics feature selection
Among the previous 1122, 1137 and 1126 features in the 
pairwise tissues, including tumor vs. PTA, tumor vs. PTD, 
and PTA vs. PTD in all ESCC patients, the Student t test 
or Mann‒Whitney U test showed that 1013, 1050 and 823 
features were statistically significant, respectively (all P val-
ues < 0.05). These features with statistical significance by 
the previous tests were separately used for the subsequent 
LASSO regression. For the pairwise tissues, including 
tumor vs. PTA, tumor vs. PTD, and PTA vs. PTD, 20, 19 
and 5 features were screened (Tables 2, 3 and 4) to perform 
the corresponding differentiation, respectively, and 10-fold 
cross-validation was applied to select the best tuning regu-
larization parameter (λ) under the 1-SE criteria (Fig. 4).

Construction and validation of the radiomics models
Through logistic regression, the above 20, 19 and 5 selected 
core radiomics features were applied to build individual 
radiomics models for identifying the differences between 
the tumor and PTA tissue, the tumor and PTD tissue, and 
the PTA and PTD tissues in TC, respectively. Then, the 3 
models for the individual pairwise tissues were validated by 
the IVC and EVC. The most appropriate individual models 
selected by AUC, accuracy, F-1 score, sensitivity, specificity, 
PPV, and NPV are illustrated in Table 5. The ROC curves 
(Fig. 5) visually revealed that the individual radiomics mod-
els had excellent ability to differentiate the tumor from PTA 
tissue and the tumor from PTD tissue in TC, and effective 

performance for the previous differential diagnoses in the 
IVC and EVC. As shown in Fig.  6, the logistic radiomics 
model showed good performance for differentiating the 
PTA from PTD tissue in TC and was also helpful for dis-
tinguishing the PTA from PTD tissue in the IVC and EVC.

The RQS of our radiomics study
According to the RQS evaluation criteria and reporting 
guidelines, the RQS score of our study was 16, accounting 
for 44.4% of the total points. The scores for each item are 
listed in Table 6.

Discussion
In the current study, we initially developed and validated 
individual CECT radiomics models for the preoperative 
differentiation of tumor from PTA tissue, tumor from 
PTD tissue, and the PTA from PTD tissue in ESCC.

As shown in this study, 1122 and 1137 candidate radi-
omics features with ICCs > 0.75 in the pairwise tis-
sues (including ESCC vs. PTA and ESCC vs. PTD) were 
reduced to 20 and 19 core features to develop the individ-
ual radiomics models to effectively differentiate the tumor 
from PTA tissue and the tumor from PTD tissue of ESCC, 
and the previous core features were composed of 13 and 
14 texture features, 3 and 2 first-order features, and 4 and 
3 shape features, respectively. Some selected features, such 
as skewness in the first-order feature class, appear to be 
related to the differentiation of the tumor from PTA or 
PTD tissue; however, it is challenging to reliably link a sin-
gle radiomics feature with the complex pathological state 
of different tissues [27]. Therefore, constructing and vali-
dating multifeature models is a more feasible and reliable 
approach to potentially differentiate the tumor from PTA 
tissue and tumor from PTD tissue. Our CECT radiomics 
models showed excellent diagnostic performance in TC, 
IVC and EVC, with all AUCs of more than 0.95, indicat-
ing that our radiomics models could play a pivotal role in 

Table 5 Performance of the radiomics models to differentiate between tumor, PTA and PTD of ESCC

ESCC esophageal squamous cell carcinoma, PTA proximal tumor-adjacent tissue, PTD proximal tumor-distant tissue, TC training cohort, IVC internal validation cohort, 
EVC external validation cohort, AUC  area under the receiver operating characteristic curve, 95%CI 95% confidence interval, PPV positive predictive value, NPV negative 
predictive value

Pairwise tissues Cohort AUC (95%CI) Accuracy F1‑score Sensitivity Specificity PPV NPV

Tumor vs. PTA TC 0.965 (0.950‑0.979) 0.965 0.965 0.974 0.955 0.956 0.974

IVC 0.956 (0.931‑0.980) 0.956 0.955 0.948 0.963 0.962 0.949

EVC 0.962 (0.939‑0.985) 0.937 0.935 0.904 0.970 0.968 0.910

Tumor vs. PTD TC 0.991 (0.985‑0.997) 0.958 0.959 0.971 0.949 0.953 0.964

IVC 0.990 (0.979‑1.000) 0.952 0.951 0.970 0.948 0.946 0.969

EVC 0.974 (0.955‑0.993) 0.970 0.969 0.970 0.978 0.977 0.963

PTA vs. PTD TC 0.870 (0.841‑0.898) 0.848 0.838 0.785 0.910 0.897 0.809

IVC 0.806 (0.632‑0.980) 0.760 0.759 0.714 0.929 0.865 0.769

EVC 0.786 (0.630‑0.941) 0.786 0.769 0.714 0.857 0.833 0.750
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Fig. 5 The receiver operating characteristic (ROC) curves of the radiomics models for differentiating between esophageal squamous cell carcinoma 
and proximal tumor‑adjacent tissue and between the tumor and proximal tumor‑distant tissue in the training cohort (A and B, respectively), 
internal validation cohort (C and D, respectively), and external validation cohort (E and F, respectively)
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differentiating the tumor from PTA tissue and the tumor 
from PTD tissue.

Moreover, we also selected 5 core features from the 1126 
features with ICC > 0.75 in the pairwise tissue (PTA vs. 
PTD) to develop the CT radiomics model to differentiate 
between the PTA and PTD tissues of ESCC. The 5 core 
features include 1 texture feature, 1 first-order feature and 
3 shape features. The texture feature and the first-order 
feature most likely reflect the differences in microarchitec-
ture and internal heterogeneity between the PTA and PTD 
tissues. Shape features exhibit the external contour infor-
mation of the PTA and PTD tissues. Our study revealed 
that the radiomics model developed with the previous 5 
core features could help differentiate the PTA from PTD 
tissue in TC (AUC: 0.870), as validated by IVC (AUC: 
0.806) and EVC (AUC: 0.786). For the first time, our study 
developed a CT radiomics model for discriminating the 
PTA from PTD tissue of ESCC, and we can speculate that 
differentiation in radiomics features between the PTA and 
PTD tissues might contribute to preoperative evaluation of 
the extent of surgical resection to some degree.

In our research, the following methods are adopted 
to ensure robustness. First, to ensure the accuracy of 
radiomics feature extraction, we drew the ROI along 
the tumor edge based on a reference criterion that the 
thickness of the abnormal esophageal wall was more 
than 5 mm [28, 29], which has been proven reasonable. 
For PTA and PTD tissues, we depicted the area of each 
ROI in at least more than half of the esophageal wall 
to obtain sufficient CECT image information. Second, 
intra- and interobserver agreements, univariate analysis 
and LASSO were used for feature selection, thus guar-
anteeing the independence and accuracy of each feature 
extraction in the final models. We used 10-fold cross-
validation and stepwise regression to avoid overfitting 
of the data and guarantee the robustness of the models 
[24]. Third, our study added EVC to validate the perfor-
mance of the radiomics models in TC, which ensured 
the reliability and stability of the models for differenti-
ating the tumor from PTA tissue, the tumor from PTD 
tissue, and the PTA from PTD tissue. Fourth, RQS was 
used to assess the methodologic quality of our radiom-
ics research, and our study obtained a score of 16, greater 
than or equal to the scores of several relevant articles in 
the published meta-analysis review [30], indicating our 
current radiomics models could help guide the design of 

Fig. 6 The receiver operating characteristic (ROC) curves 
of the radiomics model for differentiating between proximal 
tumor‑adjacent tissue and tumor‑distant tissue in the training cohort 
(A), internal validation cohort (B) and external validation cohort (C)
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our future radiomics study to improve the reliability and 
repeatability of radiomics models for clinical application.

There are still several limitations in our study. First, 
our study is a retrospective study. A prospective study 
will be needed in the future to further verify our 
results. Second, we depicted the ROIs of PTA and PTD 
tissues at only two levels (1  cm and 5  cm away from 
the proximal margin of the tumor) and did not inves-
tigate the differences in radiomics features of the sur-
rounding-tumor tissues at different sections away from 
the proximal margin of the tumor. We will conduct 
relevant research in the future. Third, we did not con-
sider the proteomic and metabolomic characteristics 
at present. P53 protein accumulation and metabolic 
profile generation in the tumor and proximal histologi-
cally normal tissue have been proven to be evidence for 
field cancerization in patients with esophageal cancer 
[12, 31]. We will combine radiomics with proteomics 
or metabolomics for our future studies. Last but not 
least, an existing study [32] has shown that cancer biol-
ogy might evolve during neoadjuvant treatment, result-
ing not only in a chemoradiotherapy-resistant residue 
but also possibly a more aggressive cancer. In addition, 
we did not know whether neoadjuvant therapy would 
impact the radiomics features of the tumor or the PTA 
and PTD tissues of resectable ESCC in patients with 
advanced cancer. Therefore, our study only enrolled 
patients who did not undergo neoadjuvant therapy 
to ensure the accuracy and reliability of the extracted 
radiomics features of the tumor and the PTA and PTD 
tissues of resectable ESCC.

Conclusions
Our study innovatively developed and validated indi-
vidual CECT radiomics models using core radiomics fea-
tures in pairwise tissues (including tumor vs. PTA, tumor 
vs. PTD, and PTA vs. PTD), and the radiomics models 
were proven to be valuable in differentiating the tumor 
from PTA tissue, the tumor from PTD tissue, and the 
PTA from PTD tissue. We hope that our radiomics mod-
els could be helpful for formulating surgical decision-
making to reduce postoperative local recurrence.
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