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Abstract
Objectives To use clinical, radiographic, and CT radiomics features to develop and validate a preoperative prediction 
model for the early recurrence of pancreatic cancer.

Methods We retrospectively analyzed 190 patients (150 and 40 in the development and test cohort from different 
centers) with pancreatic cancer who underwent pancreatectomy between January 2018 and June 2021. Radiomics, 
clinical-radiologic (CR), and clinical-radiologic-radiomics (CRR) models were developed for the prediction of 
recurrence within 12 months after surgery. Performance was evaluated using the area under the curve (AUC), Brier 
score, sensitivity, and specificity.

Results Early recurrence occurred in 36.7% and 42.5% of the development and test cohorts, respectively (P = 0.62). 
The features for the CR model included carbohydrate antigen 19-9 > 500 U/mL (odds ratio [OR], 3.60; P = 0.01), 
abutment to the portal and/or superior mesenteric vein (OR, 2.54; P = 0.054), and adjacent organ invasion (OR, 2.91; 
P = 0.03). The CRR model demonstrated significantly higher AUCs than the radiomics model in the internal (0.77 vs. 
0.73; P = 0.048) and external (0.83 vs. 0.69; P = 0.038) validations. Although we found no significant difference between 
AUCs of the CR and CRR models (0.83 vs. 0.76; P = 0.17), CRR models showed more balanced sensitivity and specificity 
(0.65 and 0.87) than CR model (0.41 and 0.91) in the test cohort.

Conclusions The CRR model outperformed the radiomics and CR models in predicting the early recurrence of 
pancreatic cancer, providing valuable information for risk stratification and treatment guidance.
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Introduction
Pancreatic cancer is a highly aggressive malignancy, 
which is challenging to treat, and has a 5-year survival 
rate of only 12% [1]. The poor prognosis of pancreatic 
cancer is primarily attributed to the high incidence of 
early postoperative recurrence, which up to 80% of the 
patients experience within 12 months after surgery [2]. 
Patients who experience early recurrence after surgical 
resection are unlikely to benefit from upfront surgery. 
Therefore, identifying patients at a high risk of early 
tumor recurrence before surgery may aid in selecting 
optimal treatment plan. Although several studies have 
developed preoperative predictive models based on clini-
cal and radiological data, such as tumor size, lymphade-
nopathy, tumor differentiation, serum carbohydrate 
antigen 19-9 (CA19-9), and vascular abutment [3–5], 
reliable biomarkers indicative of the early recurrence of 
resectable pancreatic cancer are still lacking.

Radiomics is a subfield of radiology that involves the 
extraction and analysis of a large number of quantitative 
features from medical images [6]. As radiomics models 
have been applied to a variety of organ systems, these 
models are being developed in attempt to diagnose and 
determine the prognosis of pancreatic cancer [7–11]. 
These models, however, suffer from limitations, such as 
insufficient validation, small sample size, and the inability 
to capture information outside the tumor [7–11].

In the present multicenter study, we hypothesized that 
the combination of clinical, radiologic, and CT radiomics 
features would yield a more accurate prediction of early 
recurrence than clinical and/or radiologic features. We 
aimed to develop and validate a model, which integrated 
clinical, radiologic, and CT radiomics features, for the 
preoperative prediction of the early recurrence of pan-
creatic cancer.

Methods
The present multicenter study was approved by the insti-
tutional review boards of the three tertiary referral cen-
ters (Samsung Medical Center IRB No: 2022-11-121, 
Soon Chun Hyang University Hospital Bucheon IRB No: 
2023-02-024, Chungbuk National University IRB No.: 
2023-02-020-001), and the requirement for informed 
consent was waived due to the retrospective study 
design. Our study adhered to the Transparent Reporting 
of a multivariable prediction model for Individual Prog-
nosis Or Diagnosis guidelines [12].

Patients
We searched the electronic databases of three hospi-
tals for consecutive patients with pancreatic cancer 
who underwent pancreatectomy between January 2018 
and June 2021. The inclusion criteria were as follows: 
(a) curative surgery for resectable pancreatic cancer 

as determined by a multidisciplinary team discussion 
among surgeons, oncologists, and radiologists in line with 
the National Comprehensive Cancer Network (NCCN) 
guidelines for pancreatic cancer version 2.2021 [13], (b) 
availability of a preoperative CT scan within 3 months 
of surgery, and (c) a follow-up period ≥ 12 months. The 
exclusion criteria were as follows: (a) borderline resect-
able pancreatic cancer according to the NCCN guidelines 
for pancreatic cancer version 2.2021, (b) suboptimal CT 
image quality, (c) history of prior pancreatic surgery, and 
(d) missing clinical data. The three centers included the 
following: (center 1) Samsung Medical Center, Seoul, 
South Korea formed the development cohort and (cen-
ter 2) Soonchunhyang University College of Medicine, 
Bucheon Hospital, Bucheon, South Korea and (cen-
ter 3) Chungbuk National University Hospital, Cheon-
gju, South Korea, formed the test cohort. As detailed in 
Fig. 1, a total of 150 and 40 patients were included in the 
development and test cohorts, respectively.

Clinical and pathological data
Clinical characteristics, such as age, sex, and preoperative 
serum CA19-9 levels obtained within one month before 
surgery, were collected from electronic medical records. 
Pathological results, including tumor size, tumor differ-
entiation, T and N stages according to the American Joint 
Committee on Cancer tumor-node-metastasis 8th edi-
tion, and resection margin status, were also documented. 
Recurrence was defined as the presence of radiologic 
evidence of recurrent disease either at or adjacent to the 
surgical bed, including the remnant pancreas and locore-
gional nodes, or as evidence of recurrence detected out-
side these areas [14].

CT acquisition and evaluation
Multidetector contrast-enhanced CT examinations were 
performed by each institution’s protocols. All CT exami-
nations included the portal venous phase, by scanning 
the patient 70–80  s after the initiation of the contrast 
injection. The details of CT imaging techniques are sum-
marized in Table S1.

Two board-certified abdominal radiologists (J.S. and 
J.H.L., with 10 and 9 years of experience, respectively), 
both blinded to the patients’ clinicopathological infor-
mation other than the diagnosis of pancreatic cancer, 
independently reviewed the CT images. After their ini-
tial review, they reevaluated the images together to 
reach a consensus. They evaluated the following radio-
logic features: tumor location (pancreatic head/neck 
vs. body/tail), tumor abutment to the portal vein (PV) 
and/or superior mesenteric vein (SMV), peripancre-
atic tumor infiltration, adjacent organ invasion, lymph 
node enlargement, findings of obstructive pancreatitis, 
upstream parenchymal atrophy, and dilatation of the 
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main pancreatic duct [4, 15–18]. Detailed definitions of 
the imaging features are provided in Appendix E1.

Outcome measurement
Early recurrence was defined as recurrence of pancreatic 
cancer within the 12 months after surgery [2, 4]. After 
surgery, patients were followed up according to each 
institution’s protocol, through October 2022. In general, 
the patients’ follow-up included a clinical assessment, 
serum tumor marker evaluation, and CT or MRI every 
3–6 months and at any time when clinically indicated.

Development and validation of predictive models for the 
early recurrence of pancreatic cancer
We developed the three models for the preoperative 
prediction of the early recurrence of pancreatic cancer 
in the development cohort (Fig.  2): (1) the radiomics 
model, based on CT radiomics features only; (2) clinical-
radiologic (CR) model, based on clinical and radiologic 
features; and (3) the clinical-radiologic-radiomics (CRR) 
model, which combined the CR and radiomics models. 
The performance of each model was then validated exter-
nally using the test cohort.

Segmentation
A radiologist (J.H.M., 13 years of experience in abdomi-
nal radiology), blinded to the patients’ clinical data except 
for pancreatic cancer diagnosis, manually segmented the 
pancreatic masses in both cohorts on the portal venous 
phase CT images by tracing along the tumor margins to 

create a volume of interest (VOI), using commercial soft-
ware (Aview, version 1.0.38.6; Coreline Soft). To verify 
the feature stability of the interobserver variance of seg-
mentation, another radiologist (J.H.L.) performed tumor 
segmentation in 20 randomly selected cases from the 
development cohort.

Radiomics feature extraction and selection
Radiomics feature extraction was performed using the 
VOI of each tumor with PyRadiomics software (version 
3.0.1; https://www.radiomics.io/pyradiomics.html) [19], 
in compliance with the Imaging Biomarker Standardiza-
tion Initiative [20]. The original, Laplacian of the Gauss-
ian (LoG)-filtered (sigma values of 2.0, 3.0, 4.0, and 5.0), 
and wavelet-filtered images were utilized to extract first-
order, shape, and higher-order features. A total of 572 
features were extracted, including 9 shape, 14 first-order, 
and 549 higher-order and filtered features.

Using data from the 20 cases, which were segmented 
independently by the aforementioned radiologists, the 
intraclass correlation coefficient (ICC) was calculated 
for all extracted features. Features with an interobserver 
ICC value > 0.75 were selected for subsequent pro-
cess. Radiomics features were then selected using the 
exhaustive variant of the minimum redundancy maxi-
mum relevance ensemble [21], the top five features were 
selected for the radiomics model, based on the selection 
frequency.

Fig. 1 Flowchart of the study population
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Development and selection of radiomics model
The process used for developing the radiomics model is 
illustrated in Fig. 2. The following three candidate algo-
rithms were considered: logistic regression with L2 regu-
larization (ridge regression); random forest; and Light 
Gradient Boosting Machine (LightGBM) [22, 23]. To 
compare the performance of the models, bootstrap resa-
mpling was utilized to create 1,000 bootstrap samples. 
For random forest and LightGBM, a 10-fold cross-val-
idation was performed for each bootstrap sample. The 
set of hyperparameters that produced the best mean area 
under the receiver operating characteristic curve (AUC) 
was determined by cross-validation and was used to 
train the bootstrap sample [24]. Among the three models 
developed, the model with the highest AUC was selected 
as the final predictive model. The probability output 
from the final radiomics model was designated as the 
“Radscore”.

Development of the CR model
To develop the CR model, univariable logistic regression 
was performed for each clinical and radiologic feature, 
and features with a P-value < 0.05 underwent multivari-
able logistic regression with backward selection using 
the Akaike information criterion. Features that sur-
vived backward selection were used to build the final CR 
model.

Development of the CRR model
The CRR model was constructed by combining the 
predictors from the CR model and Radscore from the 
radiomics model using ridge regression. The CRR model 
was presented as a nomogram to calculate the risk of 
early pancreatic cancer recurrence.

Statistical analysis
Comparisons between the development and test 
cohorts were done using chi-squared or the Fisher’s 
exact test for categorical variables, and student’s t-test 
or the Mann–Whitney U test for continuous variables. 
Interobserver agreement for the CT imaging features 
was evaluated using the kappa test as follows: poor, 
≤0.20; fair, 0.21–0.40; moderate, 0.41–0.60; good, 
0.61–0.80; and excellent, 0.81–0.99.

The performance of the models was evaluated using 
the AUC, Brier score, accuracy, sensitivity, and speci-
ficity. The Brier score is a measure of prediction accu-
racy, with lower scores indicating higher accuracy and 
0 indicating a perfect prediction [25]. The thresholds 
for each model were set using the generalized thresh-
old shifting technique, an algorithm-agnostic method 
for finding the optimal threshold for prediction by 
evaluating multiple subsets of the training data [26]. 
Internal validation was performed using 1,000-fold 
bootstrap samples with 0.632 + method for all metrics 
[27, 28] and with the percentile bootstrap method for 
95% confidence interval (CI) [29].

Fig. 2 Training and validation flowchart
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In the development cohort, pairwise comparisons 
(radiomics vs. CRR and CR vs. CRR) of the AUCs were 
performed, and two-sided P-values were calculated by 
inverting the corresponding CIs [30, 31]. In the test 
cohort, pairwise AUC comparisons were performed 
using the Delong test. Statistical significance was set at 

a P-value < 0.05. The software packages used are listed 
in Appendix E2.

Results
Patients
The clinical and CT radiologic features, as well as the 
postoperative data, are summarized in Table  1. The 
development and test cohorts included a total of 150 
(mean age, 66.3 years ± standard deviation [SD], 9.3; 
69 males) and 40 (mean age, 69.3 years ± SD, 8.9; 18 
males) patients, respectively. During the follow-up 
period, early recurrence occurred in 36.7% (55/150) 
and 42.5% (17/40) of the patients in the development 
and test cohort, respectively (P = 0.62). There were no 
significant differences in the demographic features, 
CA19-9 levels, CT radiologic features, or pathological 
tumor stages between the two cohorts, although the 
development cohort had a smaller tumor size (mean 
2.6 vs. 2.8  cm; P = 0.048) and a lower proportion of 
head/neck tumors (34.7 vs. 60.0%; P = 0.01) than the 
test cohort. The proportion of patients who received 
adjuvant therapy showed a borderline difference 
between the two cohorts (70.7 vs. 87.5%; P = 0.050).

Radiomics model
The ICCs for the radiomics features ranged 0.02–1.00, 
with a mean value of 0.81, and 418 features had an 
ICC > 0.75. The following top five features were sub-
sequently selected: 3D_cluster_shade of LoG-filtered 
images (sigma = 2); 3D_first_order_median of LoG-
filtered (sigma = 2); 3D_joint_energy of LoG-filtered 
(sigma = 5); mean_absolute_deviation of wavelet-fil-
tered (HHH); and variance of wavelet-filtered (HHH). 
The mean AUCs (95% CI) for the random forest, 
logistic regression, and LightGBM were 0.73 (0.57–
0.84), 0.64 (0.51–0.73), and 0.71 (0.54–0.84), respec-
tively, and the mean Brier scores (95% CI) were 0.20 
(0.16–0.25), 0.22 (0.20–0.27), and 0.32 (0.30–0.35), 
respectively. Based on these results, the random forest 
algorithm was selected for the final radiomics model.

CR model
Table 2 shows the frequency of each clinical and radio-
logic feature selected, and the results of the logistic 
regression analysis. Multivariable analysis revealed 
the following three features, which are predictive 
of the risk of early pancreatic cancer recurrence: 
CA19-9 > 500 U/mL (odds ratio [OR], 3.60; 95% CI, 
1.39–9.34; P < 0.01), abutment to the PV and/or SMV 
(OR, 2.54; 95% CI, 0.98–6.56; P = 0.054), and adjacent 
organ invasion (OR, 2.91; 95% CI, 1.11–7.62; P = 0.03). 
Other than lymph node enlargement, the radiologic 
features showed moderate-to-excellent interreader 
agreement (Table S2).

Table 1 Characteristics of development and test cohorts
Develop-
ment cohort 
(n = 150)

Test cohort 
(n = 40)

P-value

Outcome
Recurrence within 1 year 55 (36.7) 17 (42.5) 0.62
Pre-operative clinical features
Age, years (mean ± SD) 66.3 ± 9.3 69.3 ± 8.9 0.06
Sex 0.68
 Male 69 (46.0) 18 (45.0)
 Female 81 (54.0) 22 (55.0)
CA19-9 (mean ± SD) 551.0 ± 1,291.6 176.6 ± 320.4 0.07
CT radiologic features
Tumor location < 0.01
 Head/neck 52 (34.7) 24 (60.0)
 Body/tail 98 (65.3) 16 (40.0)
Abutment to the PV and/
or SMV

27 (18.0) 6 (15.0) 0.83

Peripancreatic infiltration 72 (48.0) 19 (47.5) > 0.99
Adjacent organ invasion 27 (18.0) 5 (12.5) 0.56
Enlarged lymph node 18 (12.0) 6 (15.0) 0.81
Obstructive pancreatitis 48 (32.0) 10 (25.0) 0.51
Upstream parenchymal 
atrophy

42 (28.0) 11 (27.5) > 0.99

Main pancreatic duct 
dilatation

104 (69.3) 26 (65.0) 0.74

Post-operative features
Tumor size, cm 2.6 ± 0.8 2.8 ± 0.7 0.048
Tumor differentiation 0.76
 G1 7 (4.7) 2 (5.0)
 G2 117 (78.0) 33 (82.5)
 G3 26 (17.3) 5 (12.5)
T stage 0.86
 Tis 1 (0.7) 0 (0.0)
 T1 31 (20.7) 7 (17.5)
 T2 118 (78.7) 33 (82.5)
N stage 0.93
 N0 73 (48.7) 21 (52.5)
 N1 65 (43.3) 16 (40.0)
 N2 12 (8.0) 3 (7.5)
Resection margin 0.39
 R0 120 (80.0) 35 (87.5)
 R1 30 (20.0) 5 (12.5)
Adjuvant chemotherapy/
CCRT

106 (70.7) 35 (87.5) 0.050

Note: Unless otherwise indicated, data represent the number of patients, and 
numbers in parentheses indicate percentages

CA 19-9, carbohydrate antigen 19-9; CCRT, concurrent chemoradiotherapy; PV, 
portal vein; SD, standard deviation; SMV, superior mesenteric vein
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CRR model
Multivariable analysis of the combined model showed 
that a CA19-9 level > 500 U/mL (OR 2.91; 95% CI, 
1.44–6.41; P = 0.01), abutment to the PV and/or SMV 
(OR, 2.14; 95% CI, 1.05–4.39; P = 0.04), and adjacent 
organ invasion (OR, 2.39; 95% CI, 1.10–5.19; P = 0.03) 
were predictive of early pancreatic cancer recurrence. 
Furthermore, the Radscore (OR, 5.46; 95% CI, 2.94–
9.28; P < 0.01) was also found to be an independent 
predictor of early recurrence. The optimal threshold 
for the prediction of early recurrence was determined 
to be 0.41. The nomogram of the final CRR model is 
depicted in Fig.  3. CT images of representative cases 
with CR and CRR model discrepancy are shown in 
Fig. 4.

Internal validation
In the development cohort, the AUCs (95% CI) of the 
radiomics, CR, and CRR models were 0.73 (0.57–0.84), 
0.70 (0.60–0.77), and 0.77 (0.63–0.86), respectively 
(Table  3). The AUC of the CRR model was higher 
than that of the radiomics-only model (0.77 vs. 0.73; 
P = 0.048). Although the CCR model also had a higher 
AUC than the CR model, the difference was not sta-
tistically significant (0.70 vs. 0.77; P = 0.26). The sen-
sitivities (95% CI) of the radiomics, CR, and CRR 
models were 0.75 (0.38–0.96), 0.50 (0.26–0.68), and 
0.77 (0.49–0.96), respectively, while the specificities 
(95% CI) were 0.60 (0.46–0.84), 0.81 (0.66–0.93), and 
0.61 (0.47–0.84), respectively.

External validation
In the test cohort, the AUC (95% CI) of each model was 
as follows (Table 3): 0.69 (0.51–0.85) for radiomics, 0.76 
(0.56–0.83) for CR, and 0.83 (0.65–0.94) for CRR. When 
the CR model was combined with the radiomics model, 
the resulting CRR model showed a higher AUC value 
than the radiomics model alone (0.69 vs. 0.83; P = 0.038). 
The sensitivity (95% CI) of each model was as follows: 
1.00 (1.00–1.00) for radiomics, 0.41 (0.12–0.53) for 
CR, and 0.65 (0.29–0.77) for CRR. The specificity (95% 
CI) of each model was as follows: 0.04 (0.00–0.13) for 
radiomics, 0.91 (0.78–1.00) for CR, and 0.87 (0.70–1.00) 
for CRR. Additionally, the increase in the Brier score for 
the radiomics model (0.04; 0.20 vs. 0.24) was greater than 
those of the CR (0.01; 0.20 vs. 0.21) and CRR (0.01; 0.19 
vs. 0.20) models. The ROC curves for the three models 
are shown in Fig. 5.

Discussion
We developed radiomics-, CR-, and CRR-based models 
for the prediction of the early recurrence of pancreatic 
cancer within 12 months after surgical resection. The 
CRR model demonstrated better performance than the 
radiomics model alone, with a better AUC in both the 
development and test cohorts. External validation sup-
ported the effectiveness of the CRR model, indicating 
that integrating radiomics with clinical and radiologic 
factors enhanced the predictive accuracy for the early 
recurrence of pancreatic cancer.

Patients at high risk of early recurrence of pancreatic 
cancer might not benefit from an immediate surgical 

Table 2 Logistic regression analysis for predicting early recurrence of pancreatic cancer in the development cohort
Variables Prevalence (%) Univariable Multivariable

Clinical-radiologic model Clinical-radiologic-ra-
diomics model

Odds ratio (95% CI) P-value Odds ratio (95% CI) P-value Odds ratio (95% CI) P-value
CA19-9 > 500 U/mL 30 (20.0) 5.90

(2.46–14.17)
< 0.01 3.60

(1.39–9.34)
0.01 2.91

(1.44–6.41)
0.01

Abutment to the PV and/or SMV 27 (18.0) 3.13
(1.33–7.38)

< 0.01 2.54
(0.98–6.56)

0.054 2.14
(1.05–4.39)

0.04

Peripancreatic infiltration 72 (48.0) 1.51
(0.78–2.95)

0.22

Adjacent organ invasion 27 (18.0) 3.80
(1.59–9.07)

< 0.01 2.91
(1.11–7.62)

0.03 2.39
(1.10–5.19)

0.03

Enlarged lymph node 18 (12.0) 1.11
(0.40–3.06)

0.84

Obstructive pancreatitis 48 (32.0) 0.92
(0.45–1.89)

0.83

Upstream parenchymal atrophy 42 (28.0) 0.52
(0.23–1.13)

0.10

Main pancreatic duct dilatation 104 (69.3) 0.58
(0.28–1.18)

0.13

Radscore – – – – – 5.46
(2.94–9.28)

< 0.01

CA 19-9, carbohydrate antigen 19-9; CI, confidence interval; PV, portal vein; SMV, superior mesenteric vein
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resection, which can result in significant morbidity [32]. 
The accurate prediction of early recurrence, therefore, 
can guide treatment decisions, such as determining 
which patients may benefit from neoadjuvant che-
motherapy [33–36]. Unfortunately, there is no widely 

accepted model for predicting the early recurrence of 
pancreatic cancer after curative resection. Previous mod-
els have limited clinical utility because they rely only on 
postoperative or pathological findings as predictive fea-
tures. Predictions using those models, therefore, can only 

Fig. 4 CT images of a 64-year-old male with pancreatic cancer. The patient’s preoperative CA19-9 level was 16.7 U/ml. (a) Axial portal venous phase CT 
image shows a 3.2 cm-sized pancreatic cancer (arrow) at the pancreas head. There was abutment of the tumor to the superior mesenteric vein (arrow-
head), but no evidence of adjacent organ invasion. (b) Coronal portal venous phase shows the pancreatic cancer (arrow) with upstream main pancreatic 
duct dilatation (arrowheads). (c) Portal venous phase with segmentation overlay. An R0 resection was performed, with a pathological stage of T2N1. The 
CR model predicted non-early recurrence, while the CRR model predicted early recurrence. The patient experienced recurrence within 12 months, in the 
form of liver metastasis

 

Fig. 3 Nomogram of the clinical-radiologic-radiomics model for predicting the early recurrence of pancreatic cancer after surgery. The nomogram based 
on the clinical-radiologic-radiomics model for the prediction of early recurrence after pancreatectomy for resectable pancreatic cancer. To use the nomo-
gram, the value for each variable is located on the corresponding axis and a line is drawn upward to determine the corresponding points value. The sum 
of these point values for all four predictive features is located on the total points axis, and a line is drawn downward to the survival axis to determine the 
likelihood of early cancer recurrence for an individual patient
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Table 3 Model performance in predicting early recurrence of pancreatic cancer in the development and test cohorts
AUC P-value Brier score Accuracy Sensitivity Specificity

Development cohort
Radiomics model 0.73

(0.57–0.84)
0.048* 0.20

(0.16–0.25)
0.64
(0.50–0.77)

0.75
(0.38–0.96)

0.60
(0.46–0.84)

CR model 0.70
(0.60–0.77)

0.26* 0.20
(0.18–0.24)

0.70
(0.61–0.76)

0.50
(0.26–0.68)

0.81
(0.66–0.93)

CRR model 0.77
(0.63–0.86)

– 0.19
(0.14–0.24)

0.66
(0.51–0.78)

0.77
(0.49–0.96)

0.61
(0.47–0.84)

Test cohort
Radiomics model 0.69

(0.51–0.85)
0.038† 0.24

(0.22–0.25)
0.45
(0.43–0.50)

1.00
(1.00–1.00)

0.04
(0.00–0.13)

CR model 0.76
(0.56–0.83)

0.17† 0.21
(0.20–0.26)

0.70
(0.53–0.78)

0.41
(0.12–0.53)

0.91
(0.78–1.00)

CCR model 0.83
(0.65–0.94)

– 0.20
(0.18–0.24)

0.78
(0.60–0.85)

0.65
(0.29–0.77)

0.87
(0.70–1.00)

Data are presented as mean (95% CI)
*Pairwise comparison with CCR model using bootstrap
†Pairwise comparison with CCR model using Delong’s test

AUC, area under the receiver operating characteristic curve; CI, confidence interval; CR, clinical-radiologic; CRR, clinical-radiologic-radiomics

Fig. 5 Receiver operating characteristic (ROC) curves of the radiomics, CR, and CRR models in the test cohort. The AUC of the CRR model in the test cohort 
was higher than that of the radiomics model (0.69 vs. 0.83; P = 0.038). AUC, area under the curve; CR, clinical-radiologic; CRR, clinical-radiologic-radiomics
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be made after surgery and as such are not beneficial to 
the decision to preclude upfront surgical resection [3, 
37, 38]. CA19-9 level has been the most consistent and 
widely accepted prognostic factor [17, 39], but its per-
formance is limited, as its ability to predict early recur-
rence was reported to have an AUC of 0.68 [17]. Another 
issue with CA19-9 levels as a predictive factor is that 
they are heavily influenced by obstructive jaundice [39, 
40]. Meanwhile, radiologic features, such as tumor size, 
hypodensity during the portal venous phase, invasion of 
adjacent organs, and contact with the PV and/or SMV 
are associated with pancreatic cancer prognosis [4, 15, 
16]; however, their utility is limited due to the moderate 
interobserver agreement [41].

Previous studies have explored the potential applica-
tions of radiomics-based models in determining the 
prognosis of pancreatic cancer [42–46]; however, this 
approach is unable to capture information outside of 
the tumor, whereas the CR model may provide valu-
able peritumoral information, such as PV and/or SMV 
abutment or invasion of adjacent organs. Accordingly, 
the radiomics model in the present study did not dem-
onstrate sufficient predictive ability for the early recur-
rence of pancreatic cancer. A previous study attempted 
to include perilesional information by increasing the seg-
mentation boundary; however, this approach could not 
take into account broader contextual information, such 
as adjacent organ invasion and vascular abutment, which 
were also demonstrated to be significant in the pres-
ent study [42]. One promising approach for enhancing 
radiomics-based models involves providing additional 
information, such as radiologic features and clinical data, 
that cannot be obtained from a segmented image alone 
[47]. The results of the present study support this hypoth-
esis, as the combined CRR model performed better than 
the radiomics-only model.

The present study compared several machine-learning 
algorithms in developing a radiomics-based prediction 
model. Random forest, a model built on the bootstrap 
aggregation algorithm, seeks to avoid overfitting by an 
ensemble of multiple decision trees trained on differ-
ent subsets of training data, thereby offering robust per-
formance and noise resistance [48]. The random forest 
algorithm showed the best performance in the present 
study, which is consistent with previous studies on vari-
ous organs [49–51]; however, compared to the CR and 
CRR models, the random forest-based radiomics model 
exhibited a significant decrease in accuracy and specific-
ity with the largest increase in the Brier score on external 
validation. Potential causes for this decreased perfor-
mance include variations in CT scanners and protocols, 
as well as differences in patient and tumor characteristics 
across different cohorts [52]. Accordingly, while modern 
machine learning algorithms deliver impressive results, 

their performance may deteriorate significantly when 
applied to different clinical scenarios. Therefore, it is cru-
cial to assess these models with various clinical settings 
and imaging protocols to ensure their efficacy in real 
world practice.

The present study had several limitations. First, due 
to the retrospective nature of the study, selection bias 
might have been introduced, despite efforts to minimize 
it. Second, our model did not account for postoperative 
factors that may affect recurrence, such as the resection 
margin status and the administration of adjuvant therapy. 
As we focused on the development of preoperative model 
for early recurrence to identify patients who may ben-
efit from alternative treatments, those potential factors, 
which can be obtained after surgery, were not included 
in our model. Third, our cohorts exhibited a high average 
CA19-9 level, which was a significant variable in the final 
model. Therefore, additional research is needed to deter-
mine whether our model can be generalized to patients 
with normal CA 19-9 levels. Fourth, the development and 
testing cohorts were limited in size. Although bootstrap-
ping was employed, a larger sample size would have pro-
duced more reliable results and potentially improved the 
radiomics model. Fifth, although interobserver variance 
in tumor segmentation was addressed using the ICC, 
more accurate automatic segmentation may decrease 
potential measurement errors. Unfortunately, automatic 
segmentation of the pancreas is not sufficiently reliable as 
of now.

Conclusion
In conclusion, we have developed and compared the per-
formance of radiomics, CR, and CRR models for predict-
ing early recurrence in operable pancreatic cancer. The 
CRR model outperformed the radiomics and CR models 
in predicting the early recurrence of pancreatic cancer, 
providing valuable information for risk stratification and 
treatment guidance prior to surgical resection of pancre-
atic cancer.
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